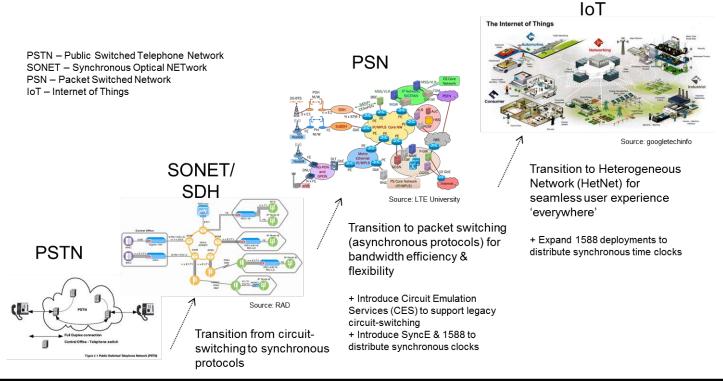

Why Synchronization Is Important to 5G

Greg Armstrong Principal System Architect - Precision Time Synchronization June 19, 2018

Introduction

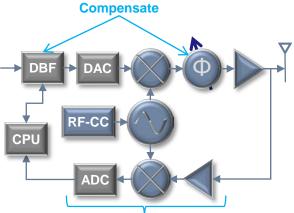
Source: The METIS 5G Architecture: A Summary of METIS Work on 5G Architectures


- With the deployment of 5G on the horizon, several key technologies need to be in place including synchronization
- Synchronization is perceived as a key enabler for 5G, as well as a fundamental component of the new Radio Access Technologies
 - Existing synchronization solutions will need to be complemented and made more robust to meet the new demands
 - Applying to SON (Self-Organizing Network), SDN (Software-Defined Networking) and NFV (Network Function Virtualization) principles
- Synchronization needs in emerging areas, such as Cable Access, Automotive, Industrial Automation, Video Broadcast, Network Analytics, Smart Grid, etc.
- New software APIs (Application Programming Interfaces) for synchronizing IoT (Internet of Things)

Evolution of Network Synchronization

- Synchronization has been a fundamental prerequisite for any telecommunications network
- The evolution to 5G is presenting new challenges, with an increased need of accuracy and reliability in distributing synchronization references throughout the network
 - e.g. There is an increased interest to provide terrestrial back up to Global Navigation Satellite Systems (GNSS)

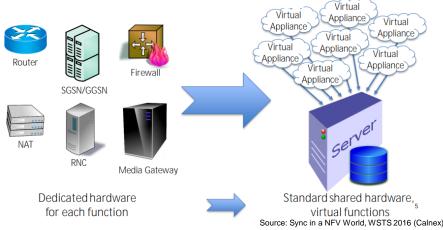
Requirements for 5G Radio Access


- For 5G Radio Access Technologies, the disaggregated basestation components will need to be coordinated in time as though they were in one box
- This is driving new synchronization requirements for the front-haul network between the Base Band Unit (BBU) and the Remote Radio Head (RRH)
- Within the RRH itself, advanced techniques such as multiple input, multiple output (MIMO), Cooperative Multi-Point (CoMP), Further enhanced Inter-Cell Interference Coordination (FeICIC), and beam forming will require very tight synchronization

Application Example: Remote Radio Head (RRH)

- Massive MIMO uses many (64+) radio paths to form beams
 - Narrow beams need tightly controlled phase
 - Difference in delay from one antenna to another (asymmetry) matters


```
Measure
```


- Path asymmetries in radio & timing paths are measured & compensated
 - Measured through receive path (TDD) or DPD path (FDD)
 - Compensation added where beam-forming is done, in digital or analog
- Initial calibration cycle will cover all fixed delays in the path
 - Absolute value of delay in each path is factored out
 - Subsequent periodic calibrations detect variations due to voltage or temperature
- The more stable the variation in phase through a device, the less frequent the calibration cycles need to be
 - Goal for all components is therefore stability in phase delay, not minimal phase delay
 - Have heard goal 1psec of phase variation per 1degC temp change at antenna

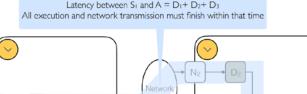
Addressing SON, SDN and NFV Principles

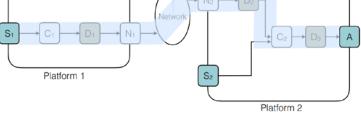
- SON allows node-based network discovery
 - Proliferation of radios puts pressure on RRH costs (capital, operating & installation expenses)
- SDN allows networks to handle many different services dynamically
 - Driven by the increasingly complex means to manage large IP/ETH networks and sharing of cloud data centres
- NFV allows the virtualization of network functions using 'generic' servers
 - Carrier-driven to reduce costs for services
- Both of these principles are driving the need to bring synchronization into the 'virtualized' network

Sync Standards Related to 5G

- Various standardization bodies, such as the ITU-T, are evolving existing standards or introducing new ones to prepare the road for 5G
 - Synchronization over packet
 - G.8271, G.8271.1, G.8273.2, G.8275.1 (T-BC, T-TC & T-TSC)
 * T-BC Class C being discussed at ITU-T
 - o [evolving] G.8262.1 (eEEC)
 - [evolving*] G.8271.2, G.8273.4, G.8275.2 (T-BC-P & T-TSC-P)
 * Can be looked at as evolving from G.8261, G.8263 (PEC-S-F), G.8265.1 (SOOC)
 - Reconstruct clocks from RoE and CPRI over Ethernet
 - [new] IEEE 802.1CM (Time-Sensitive Networking for Fronthaul)
 - eCPRI Specification v1.0
 - GNSS backup
 - [new] G.8273.4, G.8275.2 (Assisted Partial Time Support (APTS) clocks, or T-TSC-A)

Needs in Emerging Areas

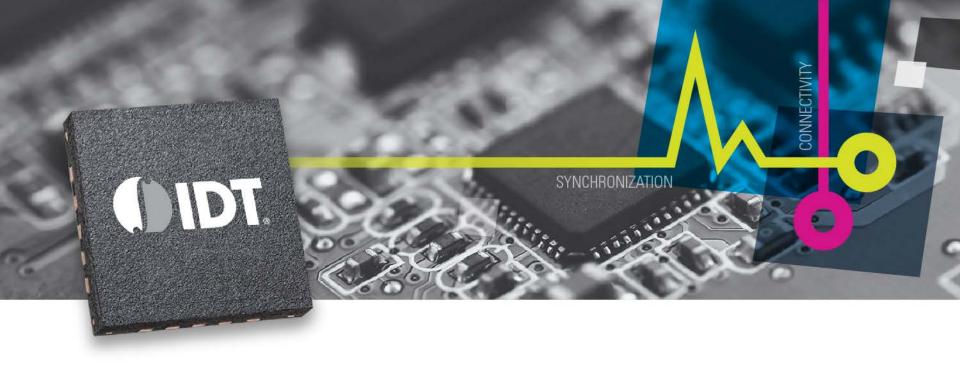

- A lot of emerging areas are also looking at synchronization
 - Intelligent Transport Systems
 - Industrial Automation
 - Network Analytics
 - Smart Grid
 - Cable Networks
 - Autonomous Vehicles
 - etc.



APIs for IoT

- IoT specific aspects are driving the need of synchronization, creating new software APIs
 - If this happened (and at this time), then ...
- How do we get time into software
 - Challenges in programming with "Time"
 - e.g. It should take exactly 100ms between sensing x and actuating y, with an acceptable tolerance of 2ms

- Source: Programming with Time, WSTS 2017 (Patricia Derler, National Instruments)
- To build complex applications, we need the right levels of abstraction
 - Instead of abstracting <u>away</u> time, we should provide the right API to program <u>with</u> time



Summary

- Synchronization will continue to be important for 5G
- Some aspects include (but are not limited to):
 - evolving existing and introducing new synchronization standards
 - the front-haul synchronization requirements for the new 5G radio access;
 - the application of SDN and NFV principles to the network synchronization; and
 - the synchronization needs in emerging areas;
 - IoT specific aspects such as the definition of APIs.

Thank You

Analog Mixed Signal Product Leadership in Growth Markets

