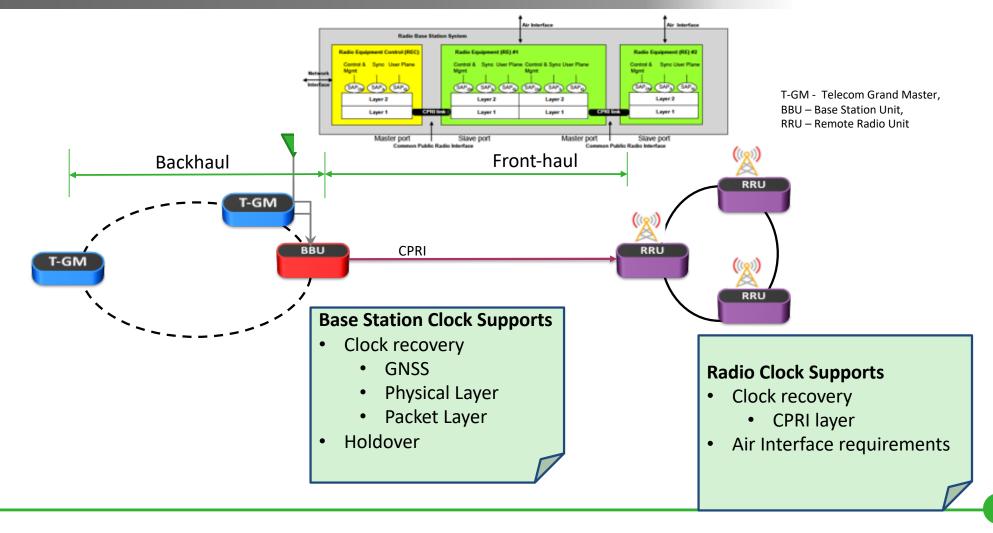
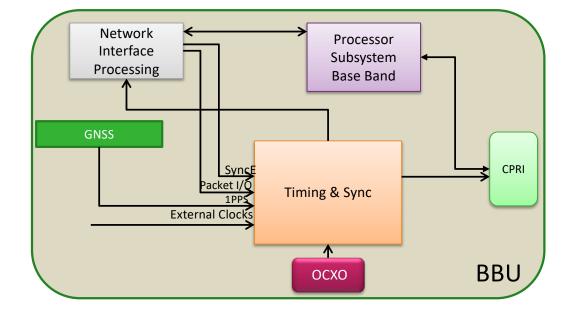
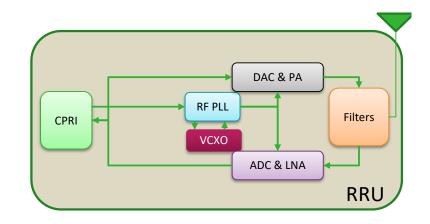
Synchronisation Challenges in Next Generation RRUs

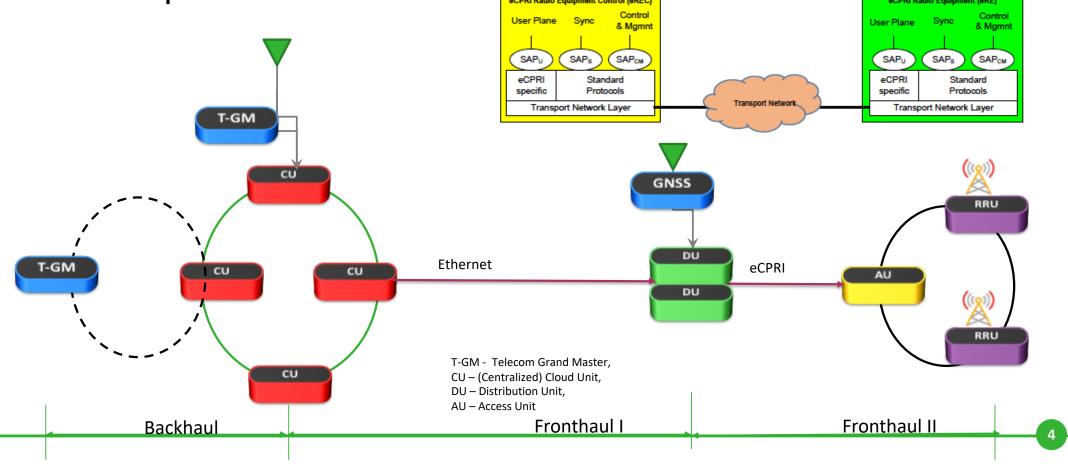



Contents


- Traditional Base Station Sync
- **Evolution of 5G and Front-Haul technologies**
- **Sync Architectures for next generation RRUs**
- □ Air Interface clocking for 5G RRUs

4G Base Station Clocking functions

Traditional Clocking Implementations



Next Generation - Physically disconnected RRUs

rakon

 CPRI supports Ethernet-switched IP-routed front-haul networks, or similar types of transport networks

5G Cellular Synchronisation requirements

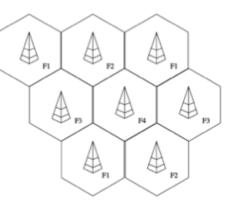
rakon

< 3GPP requirements

□ Air Interface

	Wide Area	50ppb				
LTE	Med. Range	100ppb		3GPP TS 36.104 [7]	Frequency accuracy at the air interface,	
(FDD and TDD)	Local Area	100ppb		Clause 6.5.1	over one sub-frame period (1ms)	
	Home	250ppb				
	Wide area, >3km radius		10µs		Maximum deviation in frame start times at the air interface (for cells on the same frequency with overlapping coverage	
	Wide area, ≤3km radius		Зµs	3GPP TS 36.133 [8]		
LTE-TDD	Home BS, >500m rad.		1.33 + Τ _{prop} μs	Clause 7.4.2		
	Home BS, ≤500m rad.		Зµs		areas)	

 $^{(11)}\,T_{prop}$ is the propagation delay between the Home BS and the cell selected as the network listening synchronisation source


Network Interface

16ppb

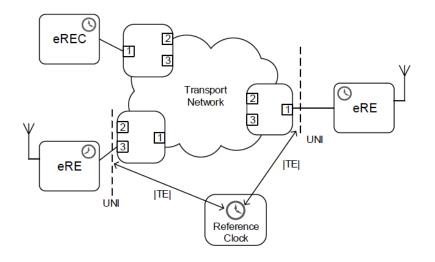
< Holdover

Hold previously known

• For x hours/days

Advanced features
COMP, ICIC

5G will use the 4G synchronisation requirements for now


Transport Network requirements - Sync

Transport Network Synchronisation

- Packet Sync Mechanisms such as IEEE1588
- With or without SyncE

2 Cases for Deployment Scenarios

- □ Case 1 : Packet clock integrated into eRE
- Case 2 : Packet clock at the network edge
 - IPPS/ToD to eREs

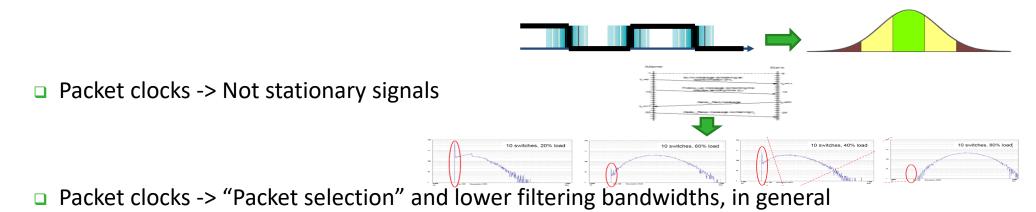
С	Category	TE for case 1& 2	Applications Details	TAE propo IEEE801.C		TAE (for Application)
				Case 1	Case 2	
	A+	TBD	MIMO or TX diversity transmissions, at each carrier frequency	-	20ns	65ns
	А	TBD	Intra-band contiguous carrier aggregation, with or without MIMO or TX diversity	60ns	70ns	130ns
	В	TBD	A & Inter-band carrier aggregation, with or without MIMO or TX diversity	100ns	200ns	260ns
	С	1100ns	3GPP LTE TDD	1100ns	1100ns	1500ns

Challenges

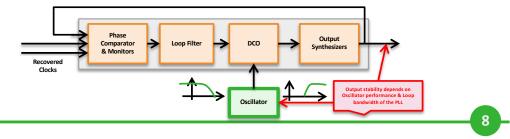
rakon

• Packet based timing recovery

< Environmental Aspects


- Higher temperatures of operation
- □ Higher shock and reliability requirements

K Higher Air interface spectral frequencies


Packet Based timing recovery

• Physical vs Packet clock timing recovery

□ Physical clocks -> stationary in nature with defined pdf

□ For given error, lower bandwidths necessitates a more stable reference clock

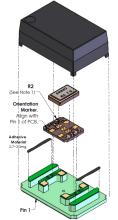
Environmental Effects

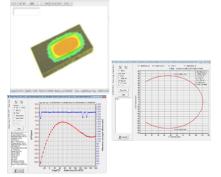
K Higher Temperatures of operation

 Densification demands modular equipment configurations

Weatherproof outdoor equipment

□ Fan-less, sealed enclosures designs


Massive MIMO RRUs


- Higher Power consuming radios
- PCBs getting hotter > 85degC

< Outdoor deployments

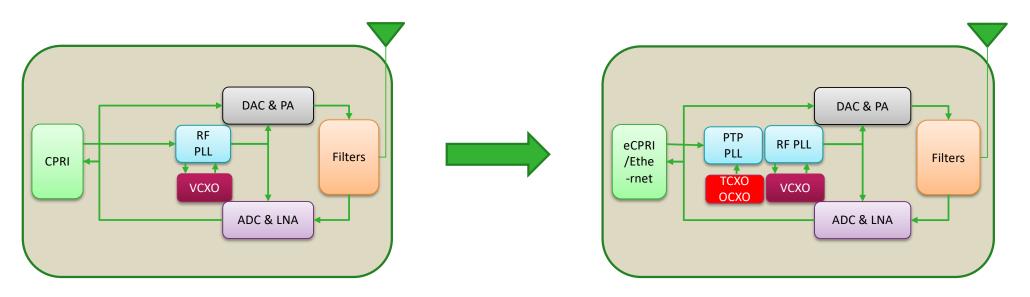
- Lamp posts & structures
- Requires low shock & vibration

- Reference Clocking challenges
 - Higher temperature of operations
 - All IC, special process solutions

rakon

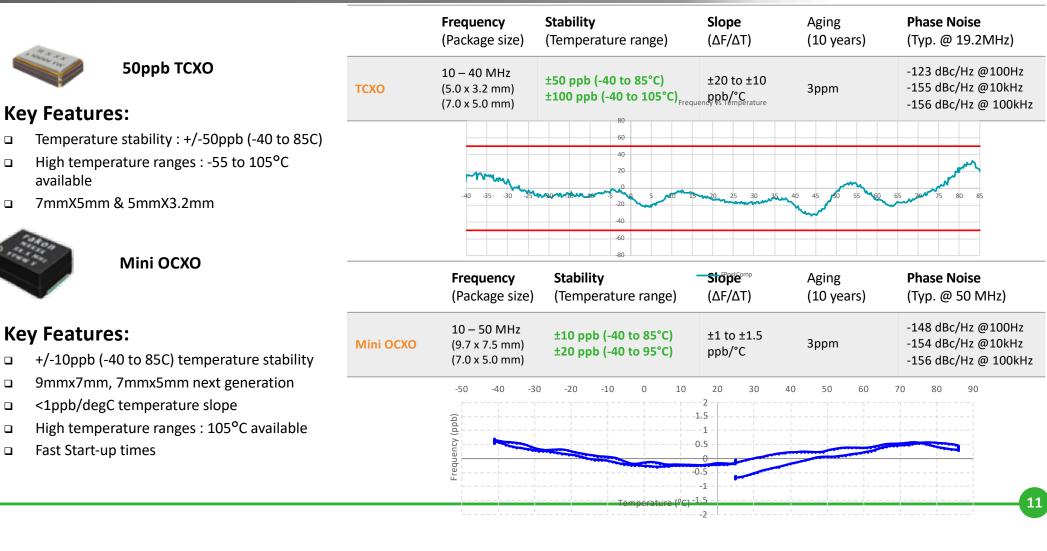
- Reference Clocking challenges
 - Special designs resilient to shock & Vibration
 - SC-cut strip crystal with G-sensitivity < 1ppb/G</p>
 - Enhanced performance in vibration prone environments

9


CONFIDENTIAL INFORMATION

5G RRU timing evolution

rakon


10

Packet interface into RRU necessitates protocol layer timing recovery

Packet timing recovery needs TCXO or OCXO

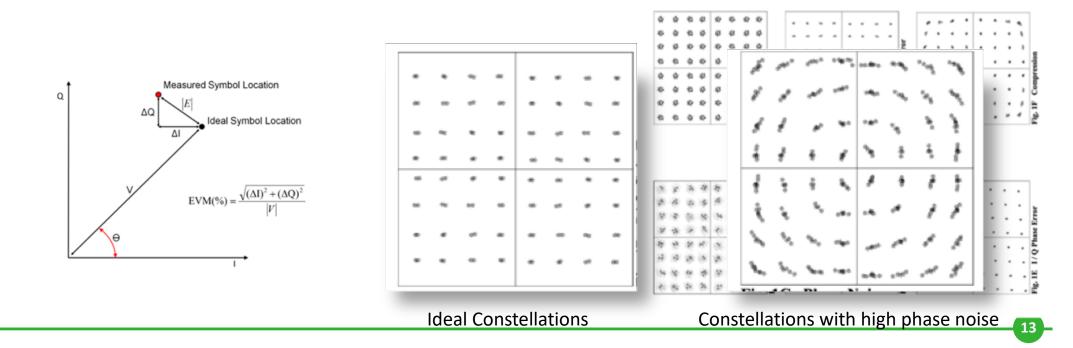
CONFIDENTIAL INFORMATION RRU Synchronisation solutions

Radio Clock reference challenges

rakon

12

- **•** 4G clocks cover up to 2.4GHz frequencies
- 5G covers high spectral frequencies
 - □ Up to 100GHz

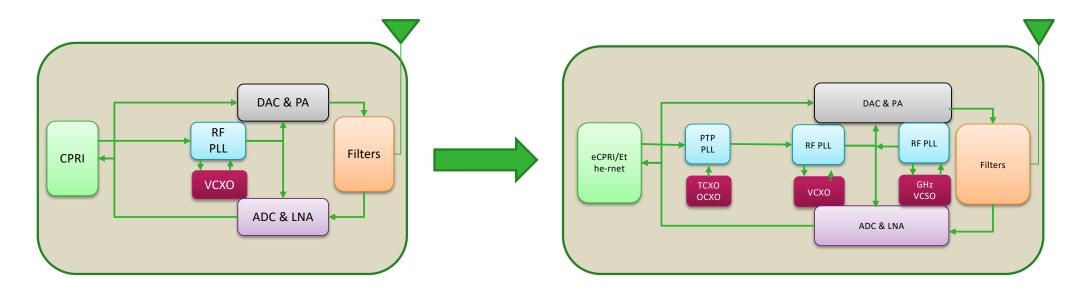

600MHz (2x35MHz) 2.5GHz (TE	E B41) 3.55-3.7 GHz 3.7-4.2 GHz	24.25-24.45GHz 24.75-25.25GHz 5.9-7.1GHz 27.5-28.35GHz	37-37.6GHz 37.6-40CHz 47.2-48_2CHz 64-710
600MHz (2x35MHz)		27.5- <u>28.35</u> GHz	37-37.6GHz 64-710 37.6-40GHz 64-710
700MHz (2x30 MHz)	3.4-3.8GHz	5.9-6.4GHz 24.5-27.5GHz	
700MHz (2x30 MHz)	3.4-3.8GHz	26GHz	
700MHz (2x30 MHz)	3.4-3.8GHz	_26GHz	
700MHz (2x30 MHz)	3.46-3.8GHz	26GHz	
700MHz (2x30 MHz)	3.6-3.8GHz	26. <u>5-27.5G</u> Hz	
	3.3-3.6GHz 4	8-5GHz 24.5-27.5GHz	37.5-42.5GHz
	3.4-3.7GHz	26. <u>5-29.5G</u> Hz	
4G / LTE bands	3.6-4.2GHz 4.4-4.9	GHz 27.5-29.5GHz	
	3.4-3.7GHz	24.25-27.5GHz	39GHz

Contribution to EVM - Phase noise

rakon

Reference clock phase noise contributes to EVM

 As the modulation level increase (like 256 QAM) the constellations are dense, minimal close-in noise desired

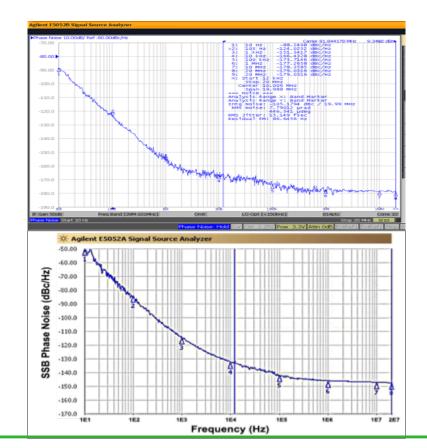

CONFIDENTIAL INFORMATION

RF References for 5G

rakon

14

• Higher spectral frequencies need low phase noise reference clocks – GHz VCXOs



High frequency clock references

Two clocking reference options

- Ultra low phase noise, low frequency
- □ Low phase noise, GHz frequency
- Ultra low phase noise solutions
 - □ 122.88M VCXO

- GHz frequency solutions
 - ~2.5GHz VCXO solutions

rakon

16

- Next Generation Base station architectures poses synchronisation challenges for RRU implementations
- Network clock recovery will be based on packet clock recovery methods, needs more stable reference clock than current
- Control Con
- Higher spectral frequencies requires very low noise reference clocks for superior performance

rakon

References

- **K** IEEE P802.1CM/D2.2 Draft Standard for Local and metropolitan area networks—Time-Sensitive Networking for Front-haul
- **«** eCPRI Interface Specification: eCPRI Specification V1.1 Common Public Radio Interface
- **CPRI Interface Specification : CPRI Specification V7.0** Common Public Radio Interface
- **«** eCPRI Transport Network D0.1 Common Public Radio Interface: Requirements for the eCPRI Transport Network
- **C** IEEE1914.3/D3.2 : Draft Standard for Radio over Ethernet Encapsulations and Mappings

Acknowledgements

- Dr. Nigel Hardy, Principal Design Engineer, Rakon UK Limited
- **Cyril Datin, R&D Product Development Manager, Rakon France SAS**
- **Florentin Margarit; Product R&D Engineering, Rakon UK Limited, New Zealand**

Thank you

