

Options for Monitoring PTP Network Performance

Doug Arnold, Meinberg-USA

www.meinbergglobal.com

- 1. Need for monitoring in PTP networks
- 2. Self Reporting
- 3. Monitoring Nodes
- 4. Network Asymmetry Monitoring
- 5. Slave Port Measurement
- 6.Comparison

Why you want to monitor a live timing network

- Shared Data/timing network
 - Timing sent over network designed for data
 - Data traffic patterns change over time as applications change
 - Timing system which once worked can degrade due changes to non-timing data
 - Especially true without full on-path support
 - Experts who initially set up timing network now busy with something else
- Regulatory compliance
 - For example MiFID II
 - Create and archive evidence of compliance

Self reporting

Self reporting by network nodes

- Everything has a management interface
- SNMP, https, etc
- Or PTP native management messages (if you must)

Advantages

- Easy, no additional equipment
- Gives detailed picture of node status

PTP Performance Monitoring management

• Optional self reporting feature in next edition of IEEE 1588

MEINBERG

- Based on fundamental statistics for each quantity
 - Average, minimum, maximum, standard deviation
 - Or counters of events
- Examples
 - Average offset from master
 - Number of Sync messages received
- Complete implementation
 - 24 our average of each metric
 - 24 hours worth of 15 minute averages of each metric
 - 37 metrics defined
 - Partial or no implementation allowed

Self Reporting

- Don't trust the slave's time accuracy estimate
 - Forward/reverse path asymmetry indistinguishable from master-slave time offset
- Asymmetry sources
 - Queuing noise
 - Ethernet PHYs
 - Acumulated TC/BC error contributions
 - Cable skew, important for longer cables

• Only checking one position in the network

Time transferred to PASSIVE Port for comparison to standard PTP time using. Any difference in PTP time and monitor indicates asymmetry.

Note: time could also be transferred from PASSIVE PORT acting as an alternate master, to the MASTER PORT also acting as a SLAVE.

Network Measurement example: New PTP Option

- Slave Event Monitoring
- TLVs sent from monitored PTP slave in signaling messages

MEINBERG

- Other means of transporting TLVs allowed but not specified
- Multiple data sets can be sent in one message
- TLVs defined
 - Slave Rx Sync Timing
 - Slave Rx Sync Computed Data
 - Slave Tx Event Timestamps
- Measurement details unspecified
 - Up to Profile or implementation
 - i.e.. measurement interval, record structure, visualization, logging.

Network Measurement example: NetSync Monitor

NetSync Monitor Report

Monitored Time Node with ID1:

Alias : Slave_TLV Address : 172.75.75.1 Location : training_rack Group ID : 0 Time Range: 16.07.2017 - 17.07.2017 Amount : 1962/2700

Monitor Configuration:

Offset Limit	: +1.000us
Protokoll	: PTP/TLV
Module	: HPS in IO5

Monitor current Status:

Current Time	: 20170717/11:38:46/UTC	
Last Error found	: No Error	
Last Measured	Offset: -182.0ns	
Last Reported	Offset: +166.0ns	
Last PTP Domain:7		
Last Delay	: +2.993us	

Monitor Statistic:

MAX Measured Offset	: +569.0ns
MIN Measured Offset	: -902.0ns
Mean Measured Offset	: -196.0ns
StdDev. Measured Offset	: +0.0ns
MAX Reported Offset	: +799.0ns
MIN Reported Offset	: -1.084us
Mean Reported Offset	: +0.0ns
StdDev. Reported Offset	: +0.0ns

Timescale from 16.07.2017 (1962 records Reported Offset)

Timescale from 16.07.2017 (1962 records Measured Offset)

	Advantages	Limitations
Self Reporting	 Can use standard management interfaces Much information available 	Timing accuracy unknown
Monitoring Node	Most accurate measurement of time error in network	Can only measure time error at where there is a monitoring node
Alternate master function	Can detect asymmetry in BC mesh networks	More information needed to pinpoint cause of asymmetry
Network measurements	Can measure every slave port	Measurement error similar to time transfer error

Summary

- Monitoring needed in live timing networks
 - Due to changes in network after timing system installation
 - To prove timing accuracy for compliance
- Self reporting by timing nodes gives rich set of information
 - But time accuracy unreliable
 - Implementation of PTPv2.1 standard metrics would enable timing analysis tools
- Monitoring nodes are most accurate measurement of network time error
 - Could be dual purpose as backup master
- Alternate master function can be used to detect asymmetry in mesh networks
- Network measurements schemes can measure every slave port accuracy
 - May be used to build compliance archive
 - Measurement node needs to be on different path than Grandmaster clock

Thank you for your attention

For more information please feel free to contact: doug.arnold@meinberg-usa.com