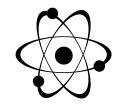
QULSAR

WSTS-2016 Tutorial Session Workshop on Synchronization in **Telecommunications** Systems San Jose, California, June 13, 2016 Presenters: Greg Armstrong (IDT) Lee Cosart (Microsemi) Silvana Rodrigues (IDT) Stefano Ruffini (Ericsson) Kishan Shenoi (Qulsar) Marc Weiss (NIST)

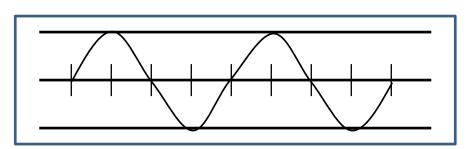
Tutorial Outline

- Fundamentals of Synchronization and Introduction to Clocks
- Timing Reference Sources & Atomic Clocks
- Phase-Locked Loops and Oscillators
- Measuring and Characterizing Network Time
- Timing in Packet Networks
- Standards
- Concluding Remarks


FUNDAMENTALS OF SYNCHRONIZATION AND INTRODUCTION TO CLOCKS

Fundamentals of Synchronization QUISAR

- Time and Frequency
 - Clocks and Oscillators
 - Alignment (frequency, phase, time)
- Fundamental need for Synchronization
 - Coordinating Analog-to-Digital and Digital-to-Analog Conversions requires synchronization
 - Coordinating Signal Processing requires synchronization
- Examples in Telecommunications



A clock is a frequency device based on physics

Provides "ticks" at precise intervals; Frequency is reciprocal of period

Electronic systems count "ticks" for time interval

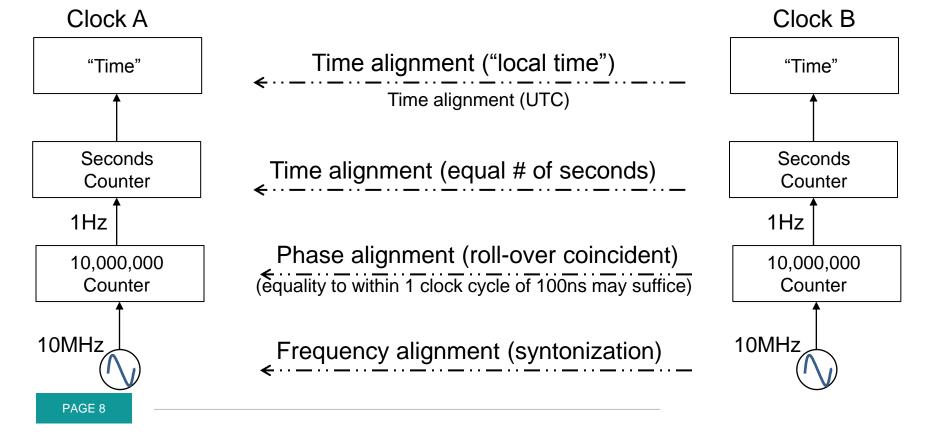
"Time-Clock" provides the time elapsed since the "start"

Time is a combination of a signal (event) and a label (time value)

QULSAR

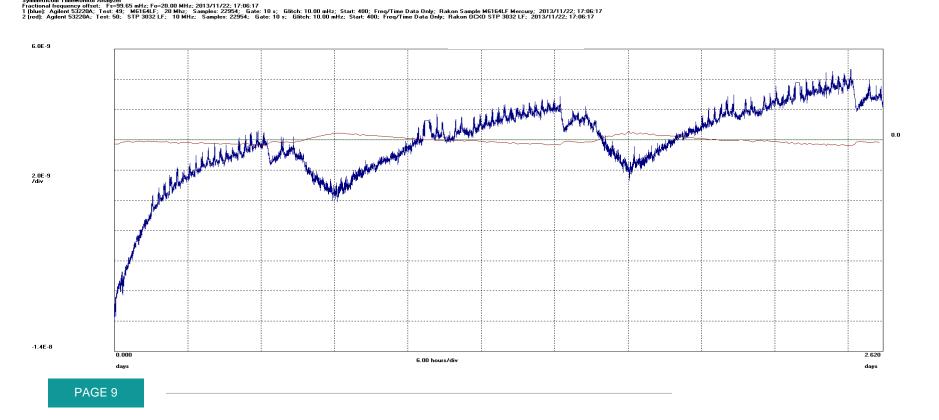
- Time Interval (e.g. 1 second) is based on a physical property of the Cesium atom
- Time is an artificial construct.
 - Choose an origin ("epoch") that people can agree on
 - Elapsed time interval from the origin.
 - Format (year/month/day/hour/min/sec...) [Time Zone]

Timescale	Epoch	Relationship	Leap Seconds	Other
ΤΑΙ	Jan 1, 1958	Based on SI second	No	Continuous
UTC	Jan 1, 1972	TAI-UTC = 33sec	Yes	Discontinuous
UT-1	Jan 1, 1958	Earth's rotation	No	Astronomical
GPS	Jan 6, 1980	TAI – GPS = 19sec	No	Continuous
Loran -C	Jan 1, 1958	UTC + 23 sec	No	Discontinuous
Local	Jan 1, 1972	TAI-UTC = 33sec	Yes	Discontinuous, Based on Time zone offset
РТР	Jan 1, 1970	TAI – PTP = 10sec	No	Continuous
NTP	Jan 1, 1900	UTC	Yes	Discontinuous

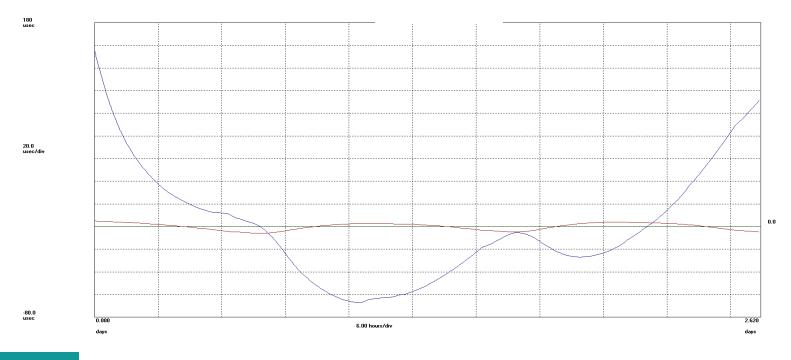

"discontinuous" timescale allows for jumps related to leap seconds

Clocks and Oscillators

- Distinction is more in terms of emphasis
 - Both entities relate to time/frequency
 - Both entities have the notion of periodicity (time-base)
 - Both entities provide "edges", but
 - Clocks usually associated with edges (square waves) (digital)
 - Oscillators usually associated with waveforms (sine waves) (analog)


- Clock: Device/system that provides timing signals to other devices/systems
 - Emphasis is on time (time interval) accuracy
 - There is the notion of calibration (traceability to UTC)
 - A clock is a "disciplined" oscillator plus counting capability
- Oscillator: Component providing periodic signals
 - Emphasis is on frequency stability (temperature, aging)
 - Waveform integrity is important ("phase noise")
 - Oscillators are components of clocks

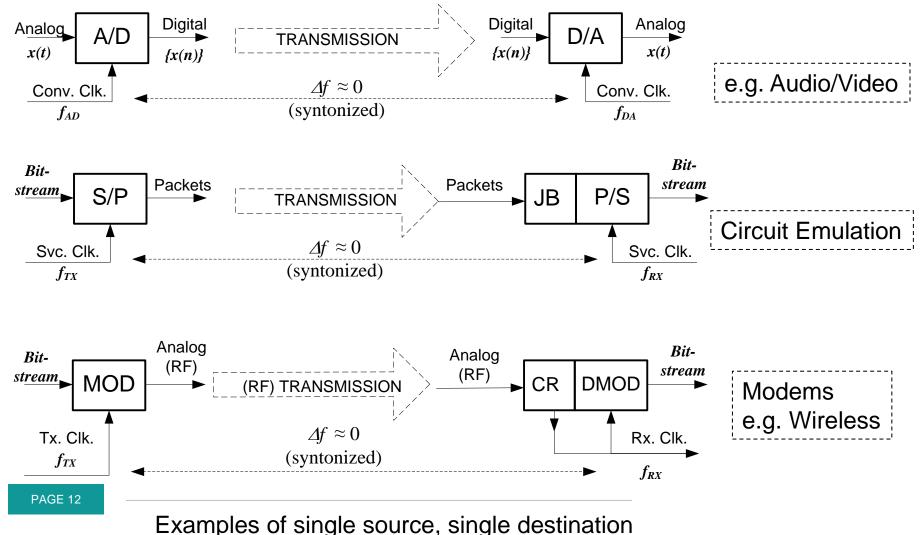
- Aligning two time clocks (synchronization) implies:
 - Make frequency B = frequency A (syntonization)
 - Make phase B = phase A (e.g. roll-over instant of 10⁷ counter)
 - Make seconds B = seconds A (elapsed time equal; same time origin)
 - Choose same formatting convention (and time-zone, etc.)


Symmetricom TimeMonitor Analyze

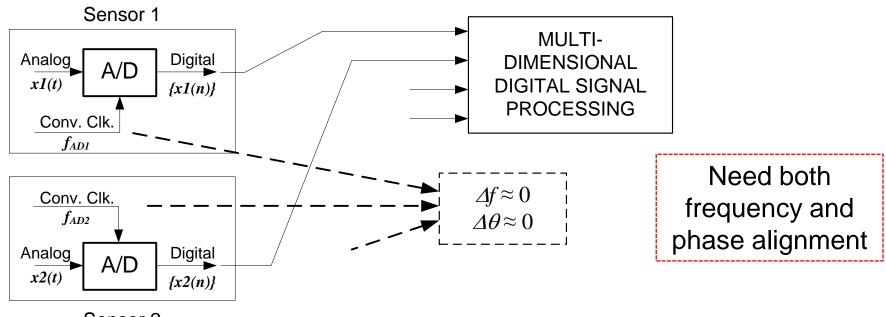
- Does an oscillator labelled "10MHz" provide a 10MHz output?
 - Two good oscillators measured over >2 days
 - Frequency is close to 10MHz BUT not exactly equal nor constant

- QULSAR. Does an oscillator labelled "10MHz" provide a 10MHz output?
 - Two good oscillators measured over >2 days
 - Phase error accumulation is small BUT not exactly zero nor constant

Symmetricam TimeMonitor Analyzer Phase deviation in units of time: Fs=99.65 mHz; Fo=20.000001 MHz; 2013/11/22; 17:06:17 1 [blue]: Aglient 532204; Test: 49; MHIGHLF; 20 MHz; Sampler: 22934; Gate: 10 s; Gitch: 10.00 mHz; Start: 400; Freq/Time Data Only; Rakon Sample MG164LF Mercury; 2013/11/22; 17:06:17 2 [cdg]: Agaient 532204; Test: 49; MHIGHLF; 20 MHz; Sampler: 2294; Gate: 10 s; Gitch: 10.00 mHz; Start: 400; Freq/Time Data Only; Rakon Sample MG164LF Mercury; 2013/11/22; 17:06:17

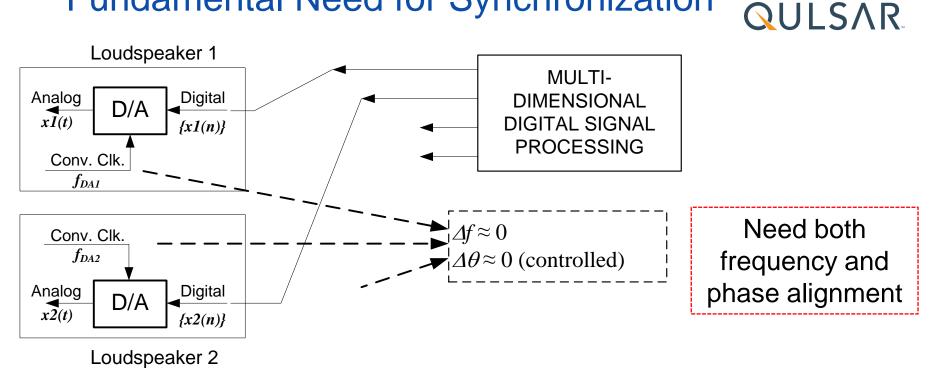


Fundamentals of Synchronization QULSAR


- Time and Frequency
 - Clocks and Oscillators
 - Alignment (frequency, phase, time)
- Fundamental need for Synchronization
 - Coordinating Analog-to-Digital and Digital-to-Analog Conversions requires synchronization
 - Coordinating Signal Processing requires synchronization
 - Single source, single destination
 - Multiple sources, single destination
 - Single source, multiple destinations
 - Multiple sources, multiple destinations
- Examples in Telecommunications

Fundamental Need for Synchronization QUI SAR

 Information has a temporal aspect (signals) — Digital Signal Processing inherently requires synchronization


Fundamental Need for Synchronization QULSAR

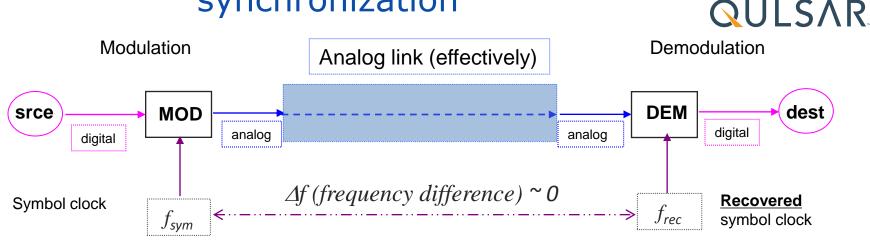
Sensor 2

- Multiple sources, single destination (many, many, examples)
- Wireless: MIMO, eICIC, CoMP, etc., etc.
- Multimedia: audio/video, surround-sound, 3D video, etc., etc.
- Power: synchrophasors
- Geophysical applications (e.g. mapping strata for oil exploration)

Fundamental Need for Synchronization

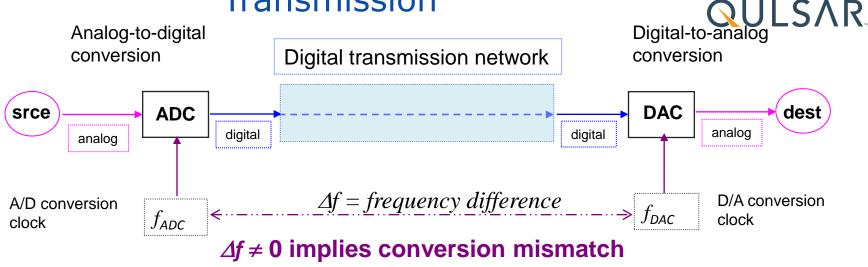
- Single source, multiple destinations (many, many, examples)
- Wireless: CRAN, RRH, MIMO
- Multimedia: audio/video, surround-sound, 3D video, etc., etc.
- Power: relay control

Fundamentals of Synchronization QUISAR


- Time and Frequency
 - Clocks and Oscillators
 - Alignment (frequency, phase, time)
- Fundamental need for Synchronization
 - Coordinating Analog-to-Digital and Digital-to-Analog Conversions require synchronization
 - Coordinating Signal Processing require synchronization
- Examples in Telecommunications

Fundamental need for Synchronization

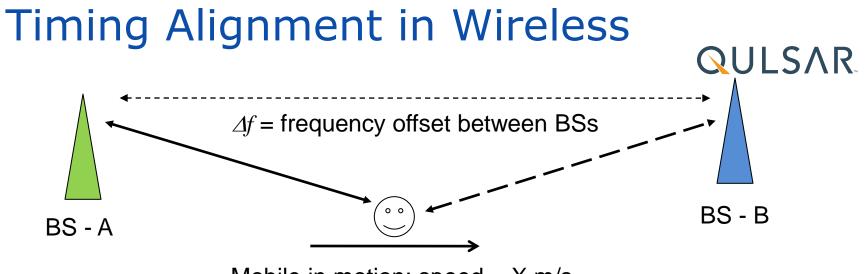
- Timing Alignment is Fundamental in Telecommunications
 - Digital transmission requires symbol-timing alignment
 - Digital network require synchronization to emulate analog channels


- Circuit Emulation (CBR over packet) requires timing alignment
- Wireless (Cellular) requires timing alignment
- Multimedia requires timing alignment
- Timing in Circuit-Switched (TDM) Networks
 - Synchronous time-division multiplexing

Data transmission schemes require synchronization

- Source/Destination : modulator and demodulator
- Transmitter (modulator) uses a particular symbol clock
 - receiver (demodulator) must extract this clock ($\Delta f \sim 0$) for proper data recovery
- The "Analog link" must, *effectively*, mimic an analog wire pair
 - Frequency translation (e.g. DSB-AM) is benign, Doppler (pitch modification effect, PME) is not benign ($\Delta f \sim$ Doppler)

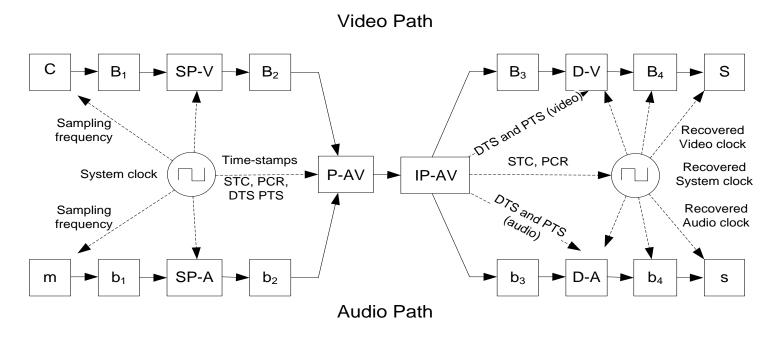
Timing Alignment required in Voice-Band Transmission


Primarily affects voice-band data (Fax, modem) and real-time video

- Source/Destination : Voice/video/fax terminal
- The digital transmission network *emulates* an analog circuit (the original circuit emulation)
- Impact of frequency difference (Δf):
 - Eventually buffers will overflow/underflow (e.g. slips) ("obvious")
 - Pitch Modification Effect (PME) (analogous to *Doppler*) makes recovered symbol clock ≠ transmit symbol clock (not so "obvious")
 - <u>Rec</u>overed waveform ≠ original waveform (more than just additive noise)

Timing alignment implicit in Circuit Emulation QULSAR.

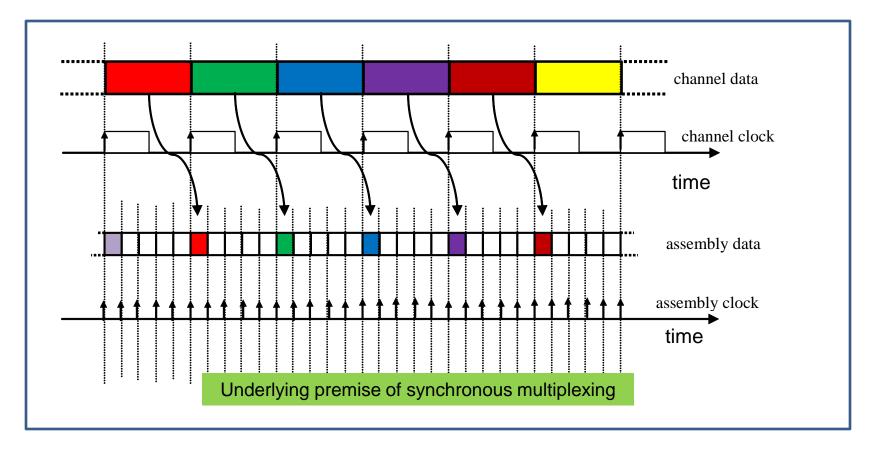
Service clock - RX


- Network impairments: delay, <u>packet-delay-variation (PDV)</u>, discarded packets
- Jitter buffer size: large enough to accommodate greatest (expected) packet-delay-variation. Packet loss concealment is not an option.
- Causes of packet "loss":
 - Network drops packets (bit errors, congestion)
 - Jitter buffer empty/full (excessive packet-delay-variation)
- Key to <u>Circuit Emulation</u>:
 - Ensure packet loss is (essentially) zero.
 - Make RX and TX service clocks "equal".
 - Note: If $RX \neq TX$ then jitter buffer is going to overflow/underflow

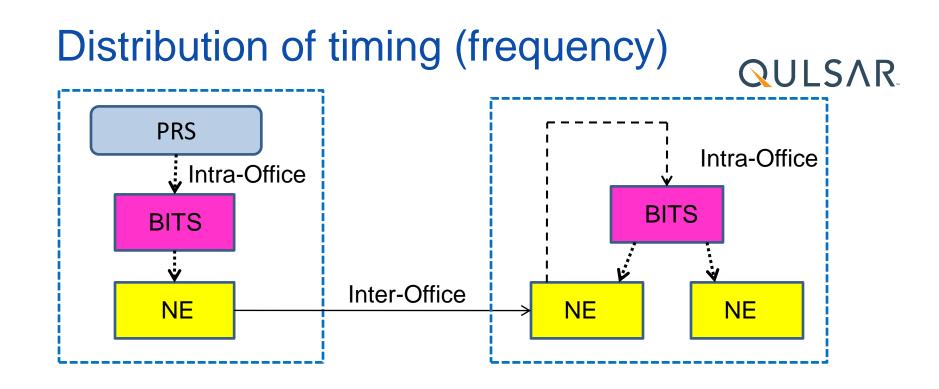
Mobile in motion; speed = X m/s

- Mobile in motion (X m/s) introduces a Doppler shift (X/c)
 - When hand-over occurs, the mobile must reacquire carrier frequency
 - Large \(\Delta f\) compromises the reliability of hand-over
- Modern Wireless (LTE) requires stringent timing to support special services/functions
 - BS-A and BS-B can cooperate for providing enhanced bandwidth to mobile
 - Frequency as well as relative phase

Timing Alignment in Multimedia



- Frequency offset (wander) between audio and video sampling results in loss of lip-sync
- Frequency offset (wander) between send-side and receive-side system clock results in freeze (video), breaks (audio), and possible loss of lip-sync


Timing in TDM Networks

- Synchronization is essential for synchronous multiplexing
 - To avoid information loss
- Synchronous multiplexing assemblies are used as carriers of timing information (DS1/E1, SONET/SDH)
 - The recovered clock is used as a reference for the BITS
 - The transmit signals must meet the "sync" mask for timing information
- Some Thumb Rules in TDM Networks:
 - Asynchronous multiplexing can preserve timing (up to a point) *if done* correctly
 - Bearer signals (DS1/E1) in asynchronously multiplexed assemblies (e.g. DS1 in DS3) can be used as carriers of timing
 - DS1/E1 bearer signals in SONET/SDH are <u>not</u> suitable as carriers of (good) timing because SONET/SDH encapsulation of DS1/E1 was done in a way that protects data but not (good) timing information

Synchronous Multiplexing

- Predetermined (rigid) ratio between channel clock and assembly clock
- 1-to-1 correspondence between channel bits and allowed bit positions
- Fractional frequency difference between channel and assembly clocks = 0

- PRS: Primary Reference Source provides stratum-1 quality output signal
- BITS: Building Integrated Timing Supply (also TSG Timing Sig. Gen.)
 - Provides clock reference to the different NEs in the CO
 - Accepts a reference input and performs clock-noise filtering (removes jitter/wander)
- NE: Network Element (e.g. SONET) uses BITS timing for its outputs
 - Recovers clock from incoming signal and provides a reference for the BITS

Stratum Levels - Telecom

- Stratum level represents the intrinsic accuracy of a clock
 - Stratum-1: 1×10^{-11} (one part in 10^{11})
 - Stratum-2: 1.6x10⁻⁸ (16 parts per billion, ppb)
 - Stratum-3: 4.6x10⁻⁶ (4.6 parts per million, ppm)
 - Stratum-4: 32x10⁻⁶ (32 parts per million, ppm)

Implication:

output frequency is <u>always</u> accurate to xxx even if the reference fails and the clock goes into an autonomous mode of operation

Normal operation:

output frequency is as accurate as the reference frequency (locked condition) – maintain a hierarchy in any chain of clocks (why?)

Time-constant achievable:

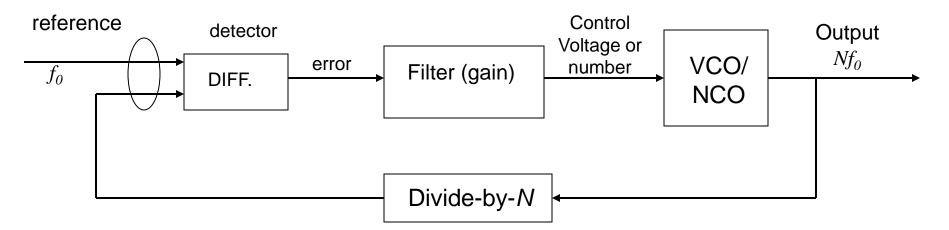
ST2	of the order of 10 ⁵ sec (bandwidth ~mHz)
ST3E	of the order of 10 ³ sec (bandwidth ~mHz)
ST3	of the order of 10 sec (bandwidth ~Hz)
ST4	of the order of 1 sec (bandwidth ~ 10 Hz)

Order of magnitude!

INTRODUCTION TO CLOCKS

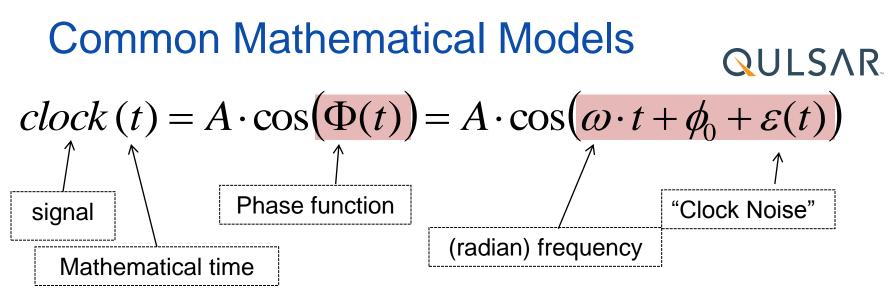
Introduction to Clocks

- Clocks and Oscillators
- Timing models for clocks and "locked loops"
- Fundamental Clock Concepts and Metrics
 - Time Error (TE) and Time Interval Error (TIE)
 - -MTIE
 - TDEV


Clocks and Oscillators

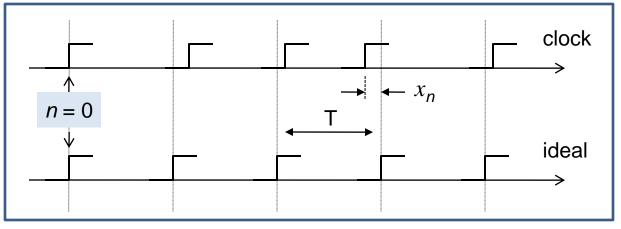
- Distinction is more in terms of emphasis
 - Both entities relate to time/frequency
 - Both entities have the notion of periodicity (time-base)
 - Both entities provide "edges", but
 - Clocks usually associated with edges (square waves) (digital)
 - Oscillators usually associated with waveforms (sine waves) (analog)

- Clock: Device/system that provides timing signals to other devices/systems
 - Emphasis is on time (time interval) accuracy
 - There is the notion of calibration (traceability to UTC)
 - A clock is a "disciplined" oscillator plus counting capability
- Oscillator: Component providing periodic signals
 - Emphasis is on frequency stability (temperature, aging)
 - Waveform integrity is important ("phase noise")
 - Oscillators are components of clocks


Loops and Holdover

- Closed loop to discipline oscillator to align with reference
- What if reference fails ... Holdover operation
 - retain the last "good" value for control voltage/value
- What happens then?
 - frequency initially "good" (assuming instantaneous operation)
 - drift away (aging, temperature, noise, etc.)
 - "stable" value will be better than value associated with stratum
 - quality of oscillator becomes the determining factor

Analytical Model of Locked Loop $\{e_1(n)\}$ $\{e_{0}(n)\}$ $H_{L}(z)$ Σ Σ (LPF) $(1-z^{-1})$ (noise in reference) (jitter in output) $\{e_2(n)\}$ (1/N) (noise in oscillator) (for illustration only) • High-freq. Noise (jitter) in output depends on the oscillator. |H(f)|• Low-freq. noise (wander) depends on the reference. Narrow-band (LPF) implies a long Transfer characteristic, e_2 to e_0 time-constant. How large time-constant can be is governed by TDEV(τ) of oscillator Transfer characteristic, e_1 to e_0 and reference (flicker floor) f (jitter frequency)

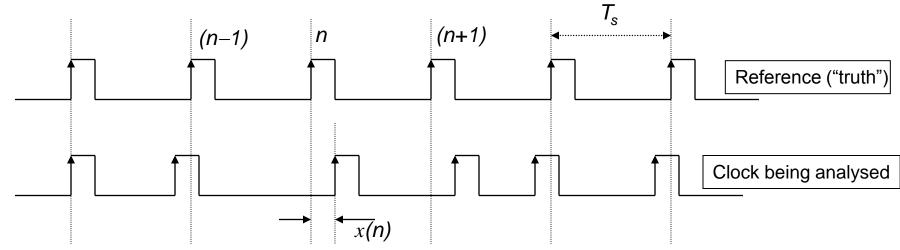


- A: Amplitude of signal. Does not figure in timing metrics.
- ϕ_0 : Initial phase. Depends on choice of time origin. Usually assumed to be 0.
- $\varepsilon(t)$: Can be further decomposed into different categories such as frequency error, frequency drift, and random noise components
- ideal periodic signal: $\Phi(t)$ is a linear function of $t(\varepsilon(t) \equiv 0)$

$$x(t) = a_0 + y \cdot t + \left(\frac{1}{2}\right) \cdot D \cdot t^2 + \phi(t)$$

$$x(nT_s) = a_0 + y \cdot nT_s + \left(\frac{1}{2}\right) \cdot D \cdot (nT_s)^2 + \phi(nT_s)$$

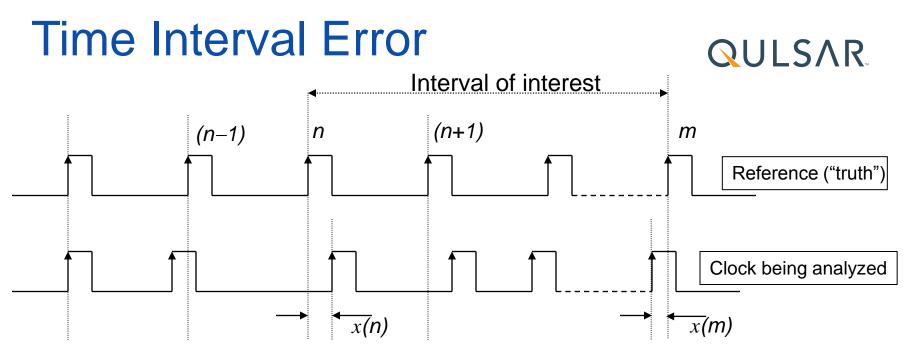
Time Error
Models


Clock Metrics - Basics

- Clock signals are (<u>almost</u>) periodic (<u>nominal</u> period ~ T)
- Time Error (Phase Error):
 - Edge does not line up phase error (expressed in time units)
- Time Error Sequence : $\{x_n\}$ or $\{x(n)\}$
 - All clock metrics derived from time error sequence
 - Note: the time error varies "slowly" so we can divide down to a convenient rate (However: careful when dividing down – aliasing)
 - Common assumption: $x_0 = 0$.

Time Error

QULSAR

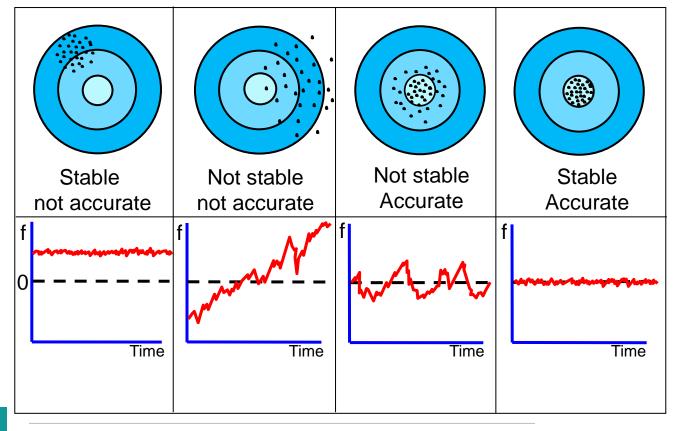

Basic premises:

- Both reference and clock being analyzed have same nominal period, T_S
- The nominal value for x(n) is zero (or a constant)
- $T_0 = 0$ (common assumption) $\Rightarrow x(n) = n \cdot T_S T_n$

The discrete-time signal $\{x(n)\}$ is the "Time Error" (TE) and is the basis for quantifying the performance of the clock (relative to reference)

{*x(n)*} can be viewed as the samples of a (analog) signal, *x(t)*, taken every T_s seconds (implied sampling rate = $f_s = 1/T_s$) [Think DSP]

PAGE 33



- Consider an interval of interest
- Duration measured by ideal clock ("truth") : $(m n) \cdot T_s$
- *Error* in measurement of same interval by clock being analyzed:

$$TIE(m,n) = x(m) - x(n)$$

Accuracy and Stability

- Accuracy: Maximum (freq., phase or time) error over the entire life of the clock
- **Stability**: (Freq., phase or time) change over a given observation time interval
- Stability is expressed with some statistical dispersion metric as a function of observation interval (e.g. ADEV, TDEV, MTIE, etc.)

Clock Metrics – MTIE and TDEV

MTIE

A measure of peak-to-peak excursion expected within a given interval, τ (τ is a parameter). The observation interval is scanned with a moving window of duration τ and MTIE(τ) is the maximum excursion.

Given a set of N observations {x(k); k=0,1,2,...,(N-1)}, with underlying sampling interval τ_0 , let $\tau = n \cdot \tau_0$ ("window" = n samples; n = 1,2,...,N).

Peak-to-peak excursion over *n* samples starting with sample index *i* is:

$$peak-to-peak(i) = \{ \max_{k=i}^{k=i+n-1} x(k) - \min_{k=i}^{k=i+n-1} x(k) \}$$

MTIE(n), or $MTIE(\tau)$, is the largest value of this peak-to-peak excursion:

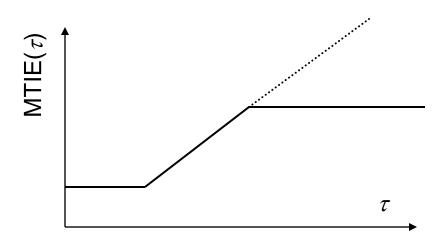
$$MTIE(n) = \max_{i=0}^{N-n} \left\{ \max_{k=i}^{k=i+n-1} x(k) - \min_{k=i}^{k=i+n-1} x(k) \right\}$$

Clock Metrics – MTIE and TDEV

QULSAR.

MTIE

MTIE is a useful indicator of the size of buffers and for predicting buffer overflows and underflows.


Write into buffer with clock A

Read out of buffer with clock B

Buffer size > MTIE(τ) implies that overflow/underflow unlikely in any interval < τ

Buffer

Buffer size = $MTIE(\tau)$ implies that overflow/underflow occurs approx. every τ seconds

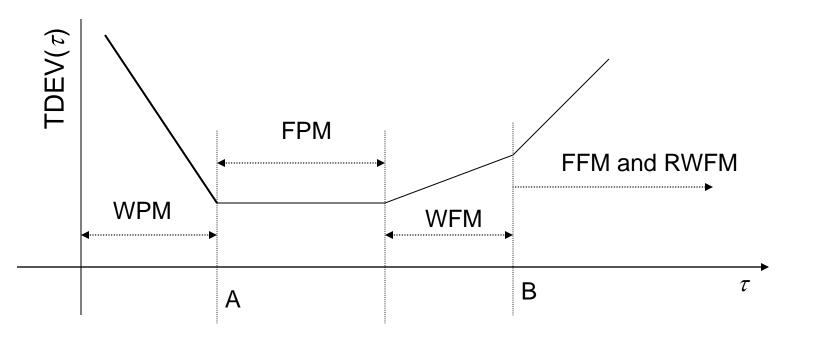
Observations regarding MTIE:

- monotonically increasing with τ
- linear increase indicates freq. offset
- for small τ , MTIE(τ) \leftrightarrow jitter
- for medium τ , MTIE(τ) \leftrightarrow wander
- for large τ , indicates whether "locked"

Clock Metrics – MTIE and TDEV

TDEV A measure of stability expected over a given observation interval, τ (τ is a parameter).

Given a set of N observations {x(k); k=0,1,2,...,(N-1)} with underlying sampling interval τ_0 , let $\tau = n \cdot \tau_0$ ("window" = n samples; n = 1,2,...,N).


$$\sigma_{x}(\tau) = TDEV(\tau) = \sqrt{\frac{1}{6n^{2}(N-3n+1)} \sum_{j=0}^{N-3n} \left[\sum_{i=j}^{n+j-1} (x_{i+2n} - 2x_{i+n} + x_{i}) \right]^{2}} \frac{\text{Conventional}}{\text{Definition}}$$
for $n=1,2,\dots, \left\lfloor \frac{N}{3} \right\rfloor$
Note: $x(k) \Leftrightarrow x_{k}$

TVAR = square of TDEV Modified Allan Variance (related to TDEV): $\sigma_y(\tau) = \frac{\sqrt{3}}{\tau} \sigma_x(\tau)$

TDEV suppresses initial phase and frequency offset and quantifies the strength of the frequency drift and noise components {i.e. $\varepsilon(t)$ } TDEV provides guidance on the noise process type.

PAGE 38

Implication of TDEV(τ) versus τ

"Phase coherence" for up to A sec. \Rightarrow Keep PLL time constants less than A sec.

"Frequency coherence" for up to B sec. \Rightarrow Keep FLL time constants less than B sec. Phase Flicker Floor

Frequency Flicker Floor

QULSAR

Thank you ...

Questions?

Kishan Shenoi CTO, Qulsar, Inc. Email: kshenoi@qulsar.com <u>www.qulsar.com</u> @qulsar

TIMING REFERENCE SOURCES & ATOMIC CLOCKS

MARC WEISS

PHASE-LOCKED LOOPS AND OSCILLATORS

GREG ARMSTRONG

MEASURING AND CHARACTERIZING NETWORK TIME

LEE COSART

TIMING IN PACKET NETWORKS

STEFANO RUFFINI

STANDARDS

SILVANA RODRIGUES

CONCLUDING REMARKS

What did we cover?

QULSAR.

- Fundamentals of Synchronization & Introduction to Clocks (Kishan Shenoi)
- Timing Reference Sources (Marc Weiss)
- Phase-Locked Loops and Oscillators (Greg Armstrong)
- Measurement Methods (Lee Cosart)
- Packet-based Timing (Stefano Ruffini)
- Standards (Silvana Rodrigues)

Fundamentals of Synchronization QUISAR

- Time and Frequency
 - Clocks and Oscillators
 - Alignment (frequency, phase, time)
- Fundamental need for Synchronization
 - Coordinating Analog-to-Digital and Digital-to-Analog Conversions requires synchronization
 - Coordinating Signal Processing requires synchronization
- Examples in Telecommunications

Introduction to Clocks

- Clocks and Oscillators
- Model of a Locked Loop
- Fundamental Clock Concepts and Metrics
 - -Time Error (TE) and Time Interval Error (TIE)
 - -MTIE and TDEV

Quartz Crystal Oscillators and Phase Locked Loops

- 1. Quartz Crystal Oscillator (XO) Technology
 - Quartz Crystal Overview
 - Ageing and Temperature
 - XO, TCXO, OCXO, DOCXO
- 2. Phase Locked Loops (PLL)
 - PLL Overview
 - Response To Injected Noise
- 3. PLL with 2 inputs

Greg Armstrong (IDT) Dominik Schneuwly (Oscilloquartz)

Timing in Packet Networks

QULSAR.

- Physical Layer Timing
 Synchronous Ethernet
- Packet-Based Timing
 - Circuit Emulation
 - Two-way Methods for Time Transfer
 - Protocols (NTP and PTP)

Standards

QULSAR

- Standards Bodies (related to Telecom):
 - ITU-T International Telecommunication Union Telecom Sector (United Nations)
 - ANSI American National Standards Institute
 - ATIS Alliance for Telecommunications Industry Solutions
 - IEEE Institute of Electrical and Electronics Engineers
 - IETF Internet Engineering Task Force
 - TICTOC <u>Timing over IP Connection and Transfer of Clock</u>
- Relevant Workshops/Forums:
 - NIST National Institute of Standards and Technology (annual Workshop on Synch. In Telecom. Systems, WSTS is co-sponsored by ATIS and IEEE)
 - ITSF International Telecom Synchronization Forum

Thank You