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Tutorial Outline 

◀ Fundamentals of Synchronization and 

Introduction to Clocks 

◀ Timing Reference Sources & Atomic Clocks 

◀ Phase-Locked Loops and Oscillators 

◀ Measuring and Characterizing Network Time 

◀ Timing in Packet Networks 

◀ Standards  

◀ Concluding Remarks 
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FUNDAMENTALS OF SYNCHRONIZATION 

AND 

INTRODUCTION TO CLOCKS 
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Fundamentals of Synchronization 

◀ Time and Frequency 

– Clocks and Oscillators 

– Alignment (frequency, phase, time) 

◀ Fundamental need for Synchronization 

– Coordinating Analog-to-Digital and Digital-to-

Analog Conversions requires synchronization 

– Coordinating Signal Processing requires 

synchronization 

◀ Examples in Telecommunications 
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Time and Frequency 

◀ A clock is a frequency device based on physics 
 

 
 

◀ Electronic systems count “ticks” for time interval 

 
 

 
 

◀ Time is a combination of a signal (event) and a 
label (time value) 

 

Provides “ticks” at precise intervals; 

Frequency is reciprocal of period 

“Time-Clock” 

provides the 

time elapsed 

since the “start” 
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     Time and Frequency 

◀ Time Interval (e.g. 1 second) is based on a physical property 

of the Cesium atom 

◀ Time is an artificial construct. 

– Choose an origin (“epoch”) that people can agree on 

– Elapsed time interval from the origin. 

– Format (year/month/day/hour/min/sec…) [Time Zone] 

Timescale Epoch Relationship Leap Seconds Other 

TAI Jan 1, 1958 Based on SI second No Continuous 

UTC Jan 1, 1972 TAI-UTC = 33sec Yes Discontinuous 

UT-1 Jan 1, 1958 Earth’s rotation No Astronomical 
GPS Jan 6, 1980 TAI – GPS = 19sec No Continuous 

Loran -C Jan 1, 1958 UTC + 23 sec No Discontinuous 

Local Jan 1, 1972 TAI-UTC = 33sec Yes Discontinuous, 

Based on Time 
zone offset 

PTP Jan 1, 1970 TAI – PTP = 10sec No Continuous 

NTP Jan 1, 1900 UTC Yes Discontinuous 

“discontinuous” timescale allows for jumps related to leap seconds 
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     Clocks and Oscillators 
◀ Distinction is more in terms of emphasis 

– Both entities relate to time/frequency 

– Both entities have the notion of periodicity (time-base) 

– Both entities provide “edges”, but –  

• Clocks usually associated with edges (square waves) (digital) 

• Oscillators usually associated with waveforms (sine waves) (analog) 

◀ Clock: Device/system that provides timing signals to 
other devices/systems 
– Emphasis is on time (time interval) accuracy 

– There is the notion of calibration (traceability to UTC) 

– A clock is a “disciplined” oscillator plus counting capability 

◀ Oscillator: Component providing periodic signals 
– Emphasis is on frequency stability (temperature, aging) 

– Waveform integrity is important (“phase noise”) 

– Oscillators are components of clocks 
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      Time and Frequency 

◀ Aligning two time clocks (synchronization) implies: 
– Make frequency B = frequency A  (syntonization) 

– Make phase B = phase A  (e.g. roll-over instant of 107 counter) 

– Make seconds B = seconds A (elapsed time equal; same time origin) 

– Choose same formatting convention (and time-zone, etc.) 

10MHz 

10,000,000 

Counter 

1Hz 

Seconds 

Counter 

“Time” 

10MHz 

10,000,000 

Counter 

1Hz 

Seconds 

Counter 

“Time” 

Clock A Clock B 

Frequency alignment (syntonization) 

Phase alignment (roll-over coincident) 

(equality to within 1 clock cycle of 100ns may suffice) 

Time alignment (equal # of seconds) 

Time alignment (“local time”) 

Time alignment (UTC) 
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      Time and Frequency 

◀ Does an oscillator labelled “10MHz” provide a 10MHz 

output? 

– Two good oscillators measured over >2 days 

– Frequency is close to 10MHz BUT not exactly equal nor constant 
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      Time and Frequency 

◀ Does an oscillator labelled “10MHz” provide a 10MHz 
output? 
– Two good oscillators measured over >2 days 

– Phase error accumulation is small BUT not exactly zero nor 
constant 
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Fundamentals of Synchronization 

◀ Time and Frequency 
– Clocks and Oscillators 

– Alignment (frequency, phase, time) 

◀ Fundamental need for Synchronization 
– Coordinating Analog-to-Digital and Digital-to-Analog 

Conversions requires synchronization 

– Coordinating Signal Processing requires 
synchronization 

• Single source, single destination 

• Multiple sources, single destination 

• Single source, multiple destinations 

• Multiple sources, multiple destinations 
◀ Examples in Telecommunications 
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Fundamental Need for Synchronization 

◀ Information has a temporal aspect (signals) ─ Digital Signal Processing 

inherently requires synchronization 

e.g. Audio/Video 

Circuit Emulation 

Modems 

e.g. Wireless 

Examples of single source, single destination 

A/D

Conv. Clk.

fAD

Analog Digital

x(t) {x(n)}
D/A

Conv. Clk.

fDA

Digital

{x(n)} x(t)

Analog
TRANSMISSION

Df  ≈ 0

(syntonized)

S/P

Svc. Clk.

fTX

Packets
Bit-

stream P/S

Svc. Clk.

fRX

TRANSMISSION

Df  ≈ 0

(syntonized)

Packets

Bit-

stream
JB

MOD

Tx. Clk.

fTX

Analog 

(RF)
Bit-

stream DMOD

Rx. Clk.

fRX

(RF) TRANSMISSION

Df  ≈ 0

(syntonized)

Bit-

stream
CR

Analog 

(RF)
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Fundamental Need for Synchronization 

◀ Multiple sources, single destination (many, many, examples) 

◀ Wireless:  MIMO, eICIC, CoMP, etc., etc. 

◀ Multimedia: audio/video, surround-sound, 3D video, etc., etc. 

◀ Power: synchrophasors 

◀ Geophysical applications (e.g. mapping strata for oil exploration) 

A/D

Conv. Clk.

fAD1

Analog Digital

x1(t) {x1(n)}

A/D

Conv. Clk.
fAD2

Analog Digital

x2(t) {x2(n)}

Sensor 1

Sensor 2

MULTI-

DIMENSIONAL 

DIGITAL SIGNAL 

PROCESSING

Df ≈ 0

Dq ≈ 0

Need both 

frequency and 

phase alignment 
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Fundamental Need for Synchronization 

◀ Single source, multiple destinations (many, many, examples) 

◀ Wireless:  CRAN, RRH, MIMO 

◀ Multimedia: audio/video, surround-sound, 3D video, etc., etc. 

◀ Power: relay control 

Need both 

frequency and 

phase alignment 

D/A

Conv. Clk.

fDA1

Analog Digital

x1(t) {x1(n)}

D/A

Conv. Clk.
fDA2

Analog Digital

x2(t) {x2(n)}

Loudspeaker 1

MULTI-

DIMENSIONAL 

DIGITAL SIGNAL 

PROCESSING

Df ≈ 0

Dq ≈ 0 (controlled)

Loudspeaker 2
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Fundamentals of Synchronization 

◀ Time and Frequency 

– Clocks and Oscillators 

– Alignment (frequency, phase, time) 

◀ Fundamental need for Synchronization 

– Coordinating Analog-to-Digital and Digital-to-

Analog Conversions require synchronization 

– Coordinating Signal Processing require 

synchronization 

◀ Examples in Telecommunications 
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      Fundamental need for Synchronization 

◀ Timing Alignment is Fundamental in 

Telecommunications 
– Digital transmission requires symbol-timing alignment 

– Digital network require synchronization to emulate analog 

channels 

– Circuit Emulation (CBR over packet) requires timing 

alignment 

– Wireless (Cellular) requires timing alignment 

– Multimedia requires timing alignment 

◀ Timing in Circuit-Switched (TDM) Networks 
– Synchronous time-division multiplexing 
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Data transmission schemes require 
synchronization 

◀ Source/Destination : modulator and demodulator 

◀ Transmitter (modulator) uses a particular symbol clock 

– receiver (demodulator) must extract this clock (Df ~ 0) 
for proper data recovery 

◀ The “Analog link” must, effectively, mimic an analog wire 

pair 

– Frequency translation (e.g. DSB-AM) is benign, Doppler (pitch 

modification effect, PME) is not benign (Df ~ Doppler) 

 

MOD srce 

Modulation 

digital analog 

DEM dest 

Demodulation 

digital analog 

Analog link (effectively) 

fsym 
frec 

Df (frequency difference) ~ 0 Recovered 

symbol clock 
Symbol clock 
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Timing Alignment required in Voice-Band 
Transmission 

◀ Source/Destination : Voice/video/fax terminal 

◀ The digital transmission network emulates an analog circuit (the original 

circuit emulation) 

◀ Impact of frequency difference (Df ): 

– Eventually buffers will overflow/underflow (e.g. slips) (“obvious”) 

– Pitch Modification Effect (PME) (analogous to Doppler) makes recovered 

symbol clock ≠ transmit symbol clock (not so “obvious”) 

– Recovered waveform ≠ original waveform (more than just additive noise) 

ADC srce 

Analog-to-digital 

conversion 

analog digital 

DAC dest 

Digital-to-analog 

conversion 

analog digital 

Digital transmission network 

fADC 
fDAC 

Df = frequency difference D/A conversion 

clock 
A/D conversion 

clock 

Df  0 implies conversion mismatch 

Primarily affects voice-band data (Fax, modem) and real-time video 
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Timing alignment implicit in Circuit 
Emulation 

• Network impairments: delay, packet-delay-variation (PDV), discarded 

packets 

• Jitter buffer size: large enough to accommodate greatest (expected) 

packet-delay-variation.  Packet loss concealment is not an option. 

• Causes of packet “loss”: 

– Network drops packets (bit errors, congestion) 

– Jitter buffer empty/full (excessive packet-delay-variation) 

• Key to Circuit Emulation : 

– Ensure packet loss is (essentially) zero. 

– Make RX and TX service clocks “equal”. 

– Note: If RX ≠ TX then jitter buffer is going to overflow/underflow 

INTFC 
Packet 

generation 
Packet Network 

(asynchronous) 
Jitter buffer (FIFO) INTFC 

Service 

signal (CBR) 
Service 

signal (CBR) 

Service clock - RX Service clock - TX 
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Timing Alignment in Wireless 

◀ Mobile in motion (X m/s) introduces a Doppler shift (X/c) 

– When hand-over occurs, the mobile must reacquire carrier frequency 

– Large Df compromises the reliability of hand-over 

◀ Modern Wireless (LTE) requires stringent timing to support 

special services/functions 

– BS-A and BS-B can cooperate for providing enhanced bandwidth to 

mobile 

– Frequency as well as relative phase 

BS - A 
BS - B 

Df = frequency offset between BSs 

Mobile in motion; speed = X m/s 
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Timing Alignment in Multimedia 

◀ Frequency offset (wander) between audio and video 

sampling results in loss of lip-sync 

◀ Frequency offset (wander) between send-side and 

receive-side system clock results in freeze (video), 

breaks (audio), and possible loss of lip-sync 

Video Path

Audio Path

C

m

B1 B2

IP-AV

B3 B4

b4b3b2b1

SP-V

SP-A

P-AV

D-V

D-A

S

s

System clock

Sampling 

frequency

Sampling 

frequency

Time-stamps STC, PCR

Recovered 

Video clock

Recovered 

Audio clock

Recovered 

System clock

DTS and P
TS (v

ideo)

DTS and PTS 

(audio)

STC, PCR, 

DTS PTS
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     Timing in TDM Networks 

◀ Synchronization is essential for synchronous multiplexing 

– To avoid information loss 

◀ Synchronous multiplexing assemblies are used as carriers of 

timing information (DS1/E1, SONET/SDH) 

– The recovered clock is used as a reference for the BITS 

– The transmit signals must meet the “sync” mask for timing information 

◀ Some Thumb Rules in TDM Networks: 

– Asynchronous multiplexing can preserve timing (up to a point) if done 

correctly 

– Bearer signals (DS1/E1) in asynchronously multiplexed assemblies (e.g. 

DS1 in DS3) can be used as carriers of timing 

– DS1/E1 bearer signals in SONET/SDH are not suitable as carriers of 

(good) timing because SONET/SDH encapsulation of DS1/E1 was done 

in a way that protects data but not (good) timing information 
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time 

channel clock 

channel data 

assembly data 

assembly clock 

time 

Synchronous Multiplexing 

Underlying premise of synchronous multiplexing 

-  Predetermined (rigid) ratio between channel clock and assembly clock 

- 1-to-1 correspondence between channel bits and allowed bit positions 

-  Fractional frequency difference between channel and assembly clocks = 0 
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     Distribution of timing (frequency) 

◀ PRS:  Primary Reference Source – provides stratum-1 quality output signal 

◀ BITS: Building Integrated Timing Supply (also TSG – Timing Sig. Gen.) 

– Provides clock reference to the different NEs in the CO 

– Accepts a reference input and performs clock-noise filtering (removes 

jitter/wander) 

◀ NE: Network Element (e.g. SONET) – uses BITS timing for its outputs 

– Recovers clock from incoming signal and provides a reference for the BITS 

PRS 

Intra-Office 

Inter-Office 

BITS BITS 

NE  NE  NE  

Intra-Office 
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      Stratum Levels - Telecom 

◀ Stratum level represents the intrinsic accuracy of a clock 
– Stratum-1:     1x10-11  (one part in 1011) 

– Stratum-2:    1.6x10-8  (16 parts per billion, ppb) 

– Stratum-3:    4.6x10-6  (4.6 parts per million, ppm) 

– Stratum-4:    32x10-6  (32 parts per million, ppm) 

◀ Implication: 
 output frequency is always accurate to xxx even if the reference fails and 

the clock goes into an autonomous mode of operation 

◀ Normal operation: 
 output frequency is as accurate as the reference frequency (locked 

condition) – maintain a hierarchy in any chain of clocks (why?) 

◀ Time-constant achievable: 
 ST2  of the order of 105 sec  (bandwidth ~mHz) 
 ST3E of the order of 103 sec  (bandwidth ~mHz) 
 ST3  of the order of 10  sec   (bandwidth ~Hz) 
 ST4  of the order of  1   sec   (bandwidth ~10Hz) 

Order of 

magnitude! 
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INTRODUCTION TO CLOCKS 
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      Introduction to Clocks 

◀ Clocks and Oscillators 

◀ Timing models for clocks and “locked loops” 

◀ Fundamental Clock Concepts and Metrics 

– Time Error (TE) and Time Interval Error (TIE) 

– MTIE 

– TDEV 
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     Clocks and Oscillators 
◀ Distinction is more in terms of emphasis 

– Both entities relate to time/frequency 

– Both entities have the notion of periodicity (time-base) 

– Both entities provide “edges”, but –  

• Clocks usually associated with edges (square waves) (digital) 

• Oscillators usually associated with waveforms (sine waves) (analog) 

◀ Clock: Device/system that provides timing signals to 
other devices/systems 
– Emphasis is on time (time interval) accuracy 

– There is the notion of calibration (traceability to UTC) 

– A clock is a “disciplined” oscillator plus counting capability 

◀ Oscillator: Component providing periodic signals 
– Emphasis is on frequency stability (temperature, aging) 

– Waveform integrity is important (“phase noise”) 

– Oscillators are components of clocks 
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        Loops and Holdover 

◀  Closed loop to discipline oscillator to align with reference 

◀  What if reference fails … Holdover operation 
–  retain the last “good” value for control voltage/value 

◀  What happens then? 
–  frequency initially “good”  (assuming instantaneous operation) 

–  drift away (aging, temperature, noise, etc.) 

–  “stable” value will be better than value associated with stratum 

–  quality of oscillator becomes the determining factor  

DIFF. 

detector reference 

Filter (gain) 

 

VCO/ 

NCO 

error 

Control 

Voltage or 

number 

Divide-by-N 

f0 

Output 

Nf0 
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      Analytical Model of Locked Loop 

S 

{e1(n)} 
HL(z) 

(LPF) )1(

1
1 z

S 

(1/N) 

{eO(n)} 

{e2(n)} 

f  (jitter frequency) 

Transfer characteristic, e2 to eO  

Transfer characteristic, e1 to eO  

• High-freq. Noise (jitter) in output 

depends on the oscillator. 

• Low-freq. noise (wander) depends 

on the reference. 

• Narrow-band (LPF) implies a long 

time-constant. 

• How large time-constant can be is 

governed by TDEV(t) of oscillator 

and reference (flicker floor) 

(noise in reference) 

(noise in oscillator) 

(jitter in output) 

)( fH

(for illustration only) 
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     Common Mathematical Models 

   )(cos)(cos)( 0 ttAtAtclock  

signal 

Mathematical time 

Phase function 

(radian) frequency 

“Clock Noise” 

•  A:  Amplitude of signal.  Does not figure in timing metrics. 

• 0:  Initial phase.  Depends on choice of time origin.  Usually assumed 

to be 0. 

• (t): Can be further decomposed into different categories such as 

frequency error, frequency drift, and random noise components 

• ideal periodic signal: (t) is a linear function of t ((t) ≡ 0) 

  )(
2

1
)(

)(
2

1
)(

2

0

2

0

ssss nTnTDnTyanTx

ttDtyatx

























Time Error 

Models 
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     Clock Metrics - Basics 

◀ Clock signals are (almost) periodic (nominal period ~ T) 

◀ Time Error (Phase Error): 
– Edge does not line up – phase error (expressed in time units) 

◀ Time Error Sequence : {xn} or {x(n)} 
– All clock metrics derived from time error sequence 

– Note: the time error varies “slowly” so we can divide down to a 

convenient rate (However: careful when dividing down – aliasing) 

– Common assumption: x0 = 0.   

ideal 

clock 

xn 

 T n = 0 
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     Time Error 

Reference (“truth”) 

Clock being analysed 

Ts 

n (n+1) (n1) 

x(n) 

Basic premises: 

• Both reference and clock being analyzed have same nominal period, TS 

• The nominal value for x(n) is zero (or a constant) 

• T0 = 0 (common assumption)   x(n) = n·TS  Tn  

The discrete-time signal {x(n)} is the “Time Error” (TE) and is the 

basis for quantifying the performance of the clock (relative to reference) 

{x(n)} can be viewed as the samples of a (analog) signal, x(t), taken every 

Ts seconds (implied sampling rate = fs = 1/Ts)  [Think DSP] 
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     Time Interval Error 

Reference (“truth”) 

Clock being analyzed 

n (n+1) (n1) 

x(n) x(m) 

m 

Interval of interest 

• Consider an interval of interest 

• Duration measured by ideal clock (“truth”) : (m  n)∙TS   

• Error in measurement of same interval by clock being 

analyzed: 

𝑇𝐼𝐸 𝑚, 𝑛 = 𝑥 𝑚 − 𝑥(𝑛) 
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    Accuracy and Stability 

◀ Accuracy: Maximum (freq., phase or time) error over the entire life of the 
clock 

◀ Stability: (Freq., phase or time) change over a given observation time interval 

◀ Stability is expressed with some statistical dispersion metric as a function of 
observation interval (e.g. ADEV, TDEV, MTIE, etc.) 

Stable  

not accurate 

Not stable 

not accurate 

Not stable 

Accurate 
Stable 

Accurate 

Time Time Time Time 

0 

f f f f 
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Clock Metrics – MTIE and TDEV 

MTIE 
A measure of peak-to-peak excursion expected within a given interval, t  

(t is a parameter).  The observation interval is scanned with a moving 

 window of duration t and MTIE(t) is the maximum excursion. 

Given a set of N observations {x(k); k=0,1,2,…,(N-1)}, with underlying 

sampling interval t0, let t = n·t0 (“window” = n samples; n = 1,2,…,N). 

Peak-to-peak excursion over n samples starting with sample index i is: 

)}(min)(max {    )(
11

kxkxipeaktopeak
nik

ik

nik

ik











MTIE(n), or MTIE(t), is the largest value of this peak-to-peak excursion: 

)}(min)(max { max    )(
11

0

kxkxnMTIE
nik

ik

nik

ik

N-n

i
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Clock Metrics – MTIE and TDEV 

MTIE 
MTIE is a useful indicator of the size of buffers and for 

predicting buffer overflows and underflows. 

Buffer 
Write into buffer with clock A Read out of buffer with clock B 

Buffer size > MTIE(t) implies that overflow/underflow unlikely in any interval < t  

Buffer size = MTIE(t) implies that overflow/underflow occurs approx. every t seconds 

t 

Observations regarding MTIE: 

• monotonically increasing with t 
• linear increase indicates freq. offset 

• for small t, MTIE(t) ↔ jitter 

• for medium t, MTIE(t) ↔ wander 

• for large t, indicates whether “locked” 
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    Clock Metrics – MTIE and TDEV 

TDEV A measure of stability expected over a given observation interval, 

t (t is a parameter). 

Given a set of N observations {x(k); k=0,1,2,…,(N-1)} with underlying 

sampling interval t0, let t = n·t0 (“window” = n samples; n = 1,2,…,N). 

 

 3
,...,2,1  

3

0

2
1

22
2

)13(6

1
)()(

N
nfor

nN

j

jn

ji

ininix xxx
nNn

TDEV











  










 tt Conventional 

Definition 

TVAR = square of TDEV 

Modified Allan Variance (related to TDEV) : )(
3

)( t
t

t xy 

Note: x(k)  xk 

TDEV suppresses initial phase and frequency offset and quantifies 

the strength of the frequency drift and noise components {i.e. (t)} 

TDEV provides guidance on the noise process type. 
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    Implication of TDEV(t) versus t 

t 

WPM 

FPM 

WFM 

FFM and RWFM 

A B 

“Phase coherence” for up to A sec. 

 Keep PLL time constants less than A sec. 

“Frequency coherence” for up to B sec. 

 Keep FLL time constants less than B sec. 

Phase Flicker Floor 

Frequency Flicker Floor 
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Thank you … 

Kishan Shenoi 
CTO, Qulsar, Inc. 

Email: kshenoi@qulsar.com 

www.qulsar.com 

@qulsar 

Questions? 

http://www.qulsar.com/
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TIMING REFERENCE SOURCES 

& 

ATOMIC CLOCKS 

 

MARC WEISS 
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PHASE-LOCKED LOOPS AND 

OSCILLATORS 

 

GREG ARMSTRONG 
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MEASURING AND CHARACTERIZING 

NETWORK TIME 

 

LEE COSART 
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TIMING IN PACKET NETWORKS 

 

STEFANO RUFFINI 
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STANDARDS 

 

SILVANA RODRIGUES 
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CONCLUDING REMARKS 
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What did we cover? 

◀ Fundamentals of Synchronization & 

Introduction to Clocks (Kishan Shenoi) 

◀ Timing Reference Sources (Marc Weiss) 

◀ Phase-Locked Loops and Oscillators 

(Greg Armstrong) 

◀ Measurement Methods (Lee Cosart) 

◀ Packet-based Timing (Stefano Ruffini) 

◀ Standards  (Silvana Rodrigues) 
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Fundamentals of Synchronization 

◀ Time and Frequency 

– Clocks and Oscillators 

– Alignment (frequency, phase, time) 

◀ Fundamental need for Synchronization 

– Coordinating Analog-to-Digital and Digital-to-

Analog Conversions requires synchronization 

– Coordinating Signal Processing requires 

synchronization 

◀ Examples in Telecommunications 
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     Introduction to Clocks 

◀ Clocks and Oscillators 

◀ Model of a Locked Loop 

◀ Fundamental Clock Concepts and 

Metrics 

– Time Error (TE) and Time Interval Error 

(TIE) 

– MTIE and TDEV 
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Quartz Crystal Oscillators and Phase 

Locked Loops 

◀ 1. Quartz Crystal Oscillator (XO) Technology 

– Quartz Crystal Overview 

– Ageing and Temperature 

– XO, TCXO, OCXO, DOCXO 

◀ 2. Phase Locked Loops (PLL) 

– PLL Overview 

– Response To Injected Noise 

◀ 3. PLL with 2 inputs 

50 

Greg Armstrong (IDT) 

Dominik Schneuwly (Oscilloquartz) 



PAGE 51 © 2014 QULSAR, INC. All Rights Reserved. 

   Timing in Packet Networks 

◀ Physical Layer Timing 

– Synchronous Ethernet 

◀ Packet-Based Timing 

– Circuit Emulation 

– Two-way Methods for Time Transfer 

– Protocols (NTP and PTP) 
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    Standards 

◀ Standards Bodies (related to Telecom): 
– ITU-T – International Telecommunication Union – Telecom 

Sector (United Nations) 

– ANSI – American National Standards Institute 

– ATIS – Alliance for Telecommunications Industry Solutions  

– IEEE – Institute of Electrical and Electronics Engineers 

– IETF – Internet Engineering Task Force 
• TICTOC – Timing over IP Connection and Transfer of Clock  

◀ Relevant Workshops/Forums: 
– NIST - National Institute of Standards and Technology 

(annual Workshop on Synch. In Telecom. Systems, WSTS 
is co-sponsored by ATIS and IEEE) 

– ITSF - International Telecom Synchronization Forum  
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Thank You 


