Power Matters.™

Measuring and Characterizing Network Time

Lee Cosart lee.cosart@microsemi.com WSTS 2016

© 2016 Microsemi Corporation.

Introduction

- Frequency transport
 - One-way: forward & reverse packet streams can be used separately
 - Asymmetry is irrelevant
 - Stable frequency needed
 - PRC (primary reference clock) needed
 - GNSS/GPS antenna cable compensation/calibration not needed
 - GSM frequency backhaul (50 ppb) is example technology

- Time transport
 - Two-way: forward & reverse packet streams used together
 - Asymmetry is critical
 - Stable time and frequency needed
 - PRTC (primary reference time clock) or ePRTC (enhanced PRTC) needed
 - GNSS/GPS antenna cable compensation/calibration needed
 - LTE-TDD time/phase (1.5 µsec) is example technology

Testing Time "Physical" vs. "Packet"

"1 PPS" (Single Point Measurement)

Measurements are made at a single point – a single piece of equipment in a single location - a phase detector with reference - is needed

"Packet" (Dual Point Measurement)

Measurements are constructed from packets time-stamped at two points - in • general two pieces of equipment, each with a reference, at two different locations – are needed

© 2016 Microsemi Corporation.

Grandmaster Test PPS and Packet Probe

Physical 1PPS signal measurement and packet signal tested with probe match

Time Accuracy and Stability Requirements

End Application Time Clock

End Application Time Clock

Distributed architecture (e.g. CPRI)

D

Distributed architecture (e.g. CPRI)

Packet

Network

Packet

Network

PRTC

PRTC

Microsemi

Deployment Case 2

Network Time Reference

(e.g. GNSS Engine)

T-GM

Δ

В

G.8271.1

T-GM

T-BC

T-TSC

T-TSC

Intra-site Time sync i/f

С

- A: Time Error: <=100ns
- C: Time Error: <=1.1µs

© 2016 Microsemi Corporation.

Stability metrics for PDV

Packet Selection Processes

- 1) Pre-processed: packet selection step prior to calculation
 - Example: *TDEV*(*PDVmin*) where *PDVmin* is a new sequence based on minimum searches on the original PDV sequence
- 2) Integrated: packet selection integrated into calculation
 - Example: *minTDEV*(PDV)

Packet Selection Methods

- Minimum:
- Percentile:
- Band:
- Cluster:

$$\begin{aligned} x_{\min}(i) &= \min \left[x_{j} \right] for(i \le j \le i + n - 1) \\ x'_{pct_mean}(i) &= \frac{1}{m} \sum_{j=0_{b}}^{b} x'_{j+i} \\ x'_{band_mean}(i) &= \frac{1}{m} \sum_{j=a}^{c} x'_{j+i} \\ x(n\tau_{0}) &= \frac{\sum_{i=0}^{(K-1)} w((nK+i)\tau_{p}) \cdot \phi(n,i)}{\sum_{i=0}^{(K-1)} \phi(n,i)} \qquad \phi(n,i) = \begin{cases} 1 & for \ |w(nK+i) - \alpha(n)| < \delta \\ 0 & otherwise \end{cases} \end{aligned}$$

Packet Selection Windows

- Windows
 - Non-overlapping windows (next window starts at prior window stop)
 - Skip-overlapping windows (windows overlap but starting points skip over N samples)
 - **Overlapping windows** (windows slide sample by sample)

- Packet Selection Approaches (e.g. selecting fastest packets)
 - Select X% fastest packets (e.g. 2%)
 - Select N fastest packets (e.g. 10 fastest packets in a window)
 - Select all packets faster than Y (e.g. all packets faster than 150µs)

G.8260 Appendix I Metrics

FPC, FPR, FPP: Floor Packet Count/Rate/Percent

© 2016 Microsemi Corporation.

PDV metrics studying minimum floor delay packet population

Time Transport: Two-way metrics

Packet Time Transport Metrics

Time Transport: Two-way packet delay

Time Transport: Two-way metrics

Comments:

- Knowledge of asymmetry and latency in both directions is critical
- (2) 2wayTE is a fundamental twoway calculation
- (3) Ideal fwd/rev packet: floor Ideal 2wayTE: zero

🛇 Microsemi.

1.0E-6

1.0E-7

1.0E-8

1.0E-9

1.0E-10

Two-wa

100.0

Power Matters.[™] 11

1.000 ksec

Reverse

MAFF

MAFE

Two-way Time Error \Leftrightarrow Network Asymmetry

Asymmetry in Wireless Backhaul (Ethernet wireless backhaul asymmetry and IEEE 1588 slave 1PPS under these asymmetrical network conditions)

Network Asymmetry

150 km fiber PTP over OTN transport (2wayTE is 19.1 µsec which represents the 38.2 µsec difference between forward and reverse one-way latencies)

\sub Microsemi.

Conclusions

- Packet time transport measurements require common time scale reference at both ends of the network being studied (GNSS at both ends is a way to do this)
- Asymmetry is everywhere, asymmetry is invisible to the IEEE 1588 protocol, thus asymmetry has a direct bearing on the ability to transport time precisely
- The "two-way time error" calculation is a direct measure of asymmetry
- There are two ways to assess time transport: (1) measuring a 1PPS reference at the node being studied and (2) measuring a packet signal at the node being studied
- Packet metrics for time transport must use both forward and reverse streams together rather than separately as is the case for frequency transport
- Packet metrics for time transport can make use of much of the methodology used for packet frequency transport metrics

Lee Cosart

Senior Technologist <u>Lee.Cosart@microsemi.com</u> Phone: +1-408-428-6950

