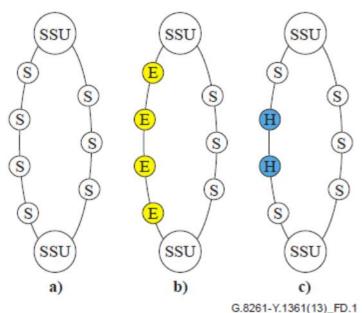


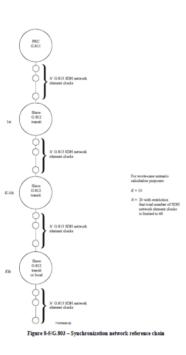
TIMING IN PACKET NETWORKS

CONTENTS

- > Background
- > Frequency Sync over the Physical Layer
- > Frequency sync via packets
- > Two-Way Time Transfer
- > Time Protocols: NTP/PTP Details
- > Impairments when delivering timing via packets
- > Packet-based Metrics for frequency and time

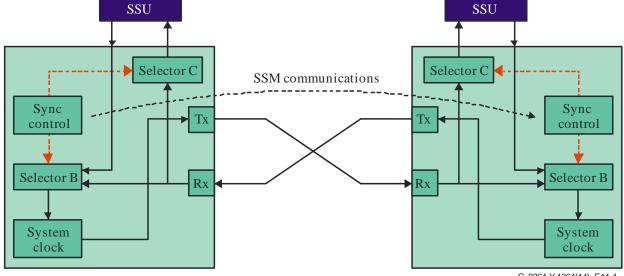
HISTORICAL BACKGROUND




- > Packet switching network does not require sync itself (at least traditional packet networks ..)
- > CBR (Constant Bit Rate) services over ATM, one of the first packet—sync related examples
 - Methodologies to recover the CBR sync rate (e.g. 2 Mbit/s services, including 50 ppm frequency deviation):
 - Network Synchronous
 - Adaptive
 - Differential
- › Generalization due to migration to packet networks (Ethernet-IP; Ethernet Physical layer traditionally defined as «asynchronous»):
 - Support timing requirements of the connected networks (e.g. Mobile applications)
 - Circuit Emulation detailed performance analysis
 - Frequency sync distribution via dedicated protocols (NTP, PTP)
 - Standardized performance objectives over reference networks (e.g. ITU-T Recc. G.8261)
 - Definition of a synchronous Ethernet (syncE) physical layer (G.8261, G.8262, G.8264)
- > Increased interest to also deliver time/phase sync reference
 - Packet-based sync technologies required (may be combined with synchronous physical layer)
- > Recent efforts for «Deterministic» packet networks (e.g. TSN-IEEE, Detnet-IETF)

SYNCE: INTRODUCTION

- Several applications requiring accurate frequency reached by Ethernet
 - Since the very start of timing over packet network activities, it was proposed to define possible use of synchronous Ethernet physical layer
 - Not in contradiction with IEEE (10⁻¹¹ within the +/-100 ppm 20 ppm)
 - Only in full duplex mode (continuous signal required)
- Based on SDH specification (for interoperability and simplifying the standardization task)
 - Synchronous Ethernet equipment equipped with a synchronous Ethernet Equipment Clock – EEC (G.8262). Synchronous Ethernet interfaces extract the received clock and pass it to the system clock.
 - Synchronization Status Message as per G.8264
 - Ongoing work to defined enhanced SyncE (G.8262.1)
- It does not transport Time (but it has been proposed)
- > All nodes must support SyncE: sync chain as per G.803
 - Cannot be transported transparently across network boundaries



SSM (SYNCHRONIZATION STATUS MESSAGE) IN SYNCE

- > SSM required to prevent timing loops and to support reference selection (as per SDH);
 - details according to G.781 and G.8264
- > In SDH SSM delivered in fixed locations of the SDH frame
 - Packet based mechanism required in case of SyncE
- OUI (organizationally unique identifier) from IEEE reused to specify exchange of QLs over the OAM specific slow protocol (OSSP)
- > EEC option 1 clock treated as G.813
 option 1 (QL-SEC), EEC option 2 as an G.812
 type IV clock (QL-ST3).
- > Two types of protocol message types are defined
 - "heart-beat" message (once per second)
 - Event message generated immediately
- > SSM QL value is considered failed if no SSM messages are received after a five second period.

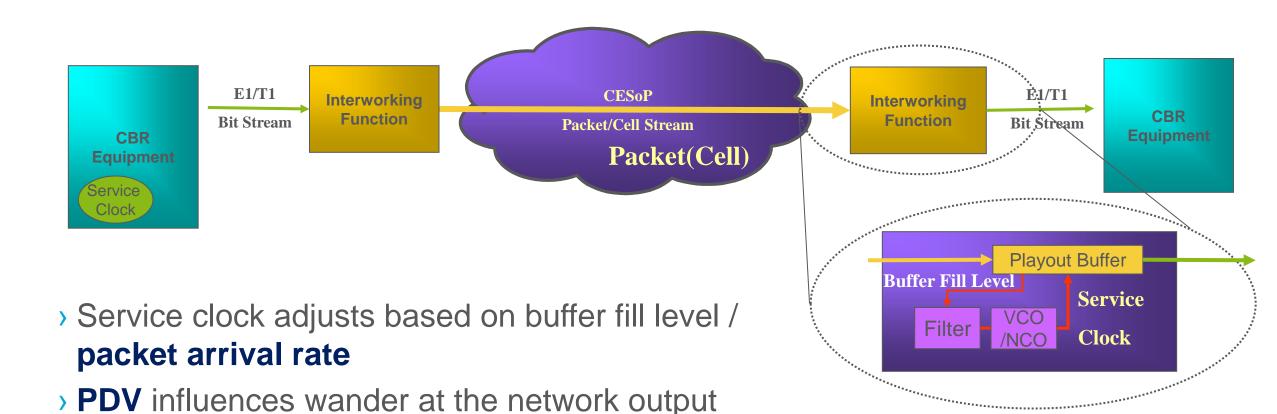
G.8264-Y.1364(14)_F11-1

ETHERNET SYNCHRONIZATION MESSAGING CHANNEL (ESMC) FORMAT

> ESMC PDU with QL TLV always sent as the first TLV in teh Data and padding field

Octet number	Size/bits	Field			
1-6	6 octets	Destination Address = 01-80-C2-00-00-02 (hex)			
7-12	6 octets	Source Address			
13-14	2 octets	Slow Protocol Ethertype = 88-09 (hex)			
15	1 octet	Slow Protocol Subtype = 0A (hex)			
16-18	3 octets	ITU-OUI = 00-19-A7 (hex)			T
19-20	2 octets	ITU Subtype	Octet number	Size/bits	Field
21	bits 7:4 (Note 1)	Version	1	8 bits	Type: 0x01
	bit 3	Event flag	2-3	16 bits	Length: 00-04
	bits 2:0 (Note 2)	Reserved			Ŭ.
22-24	3 octets	Reserved	4	bits 7:4 (Note)	0x0 (unused)
25-1532	36-1490 octets	Data and padding (See point j)		bits 3:0	SSM code
Last 4	4 octets	FCS	NOTE – Bit 7 of octet 4 is the mos	st significant bit. The least significa	nt nibble, bit 3 to bit 0 (bits 3:0)

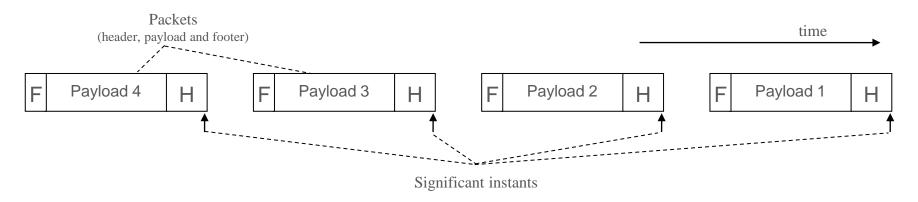
NOTE 1 – Bit 7 is the most significant bit of octet 21. Bit 7 to bit 4 (bits 7:4) represent the four-bit contains the four-bit sSM code.


NOTE 2 – The three LSBs (bits 2:0) are reserved.

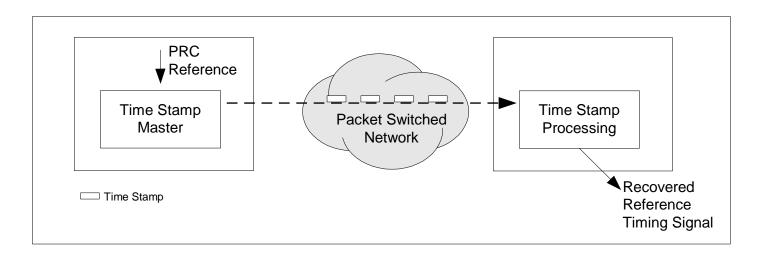
> Recently extended to carry new clock types (and inform on PRTC traceability)

- Extend QI TLV

PACKET-BASED TIMING: ADAPTIVE CLOCK OPERATION

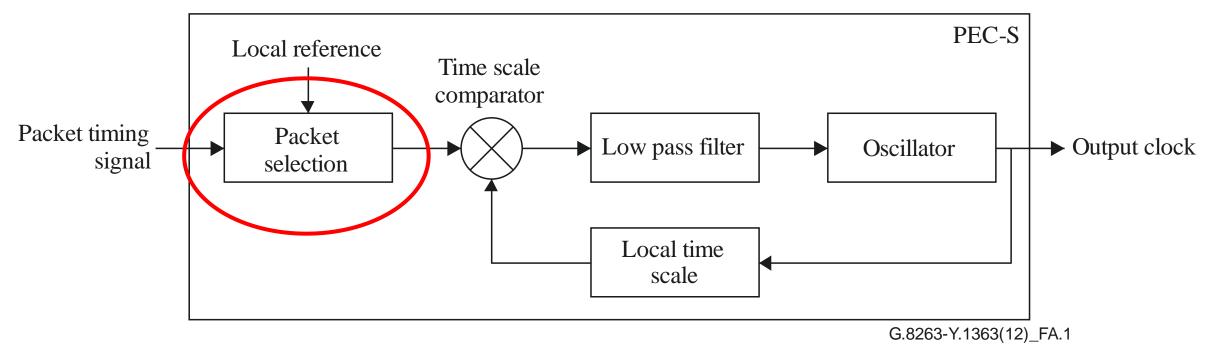


FROM CLOCKS TO "PACKET CLOCKS" |



- > "Packet clocks" can be described in a similar way ...
- CES Packets do have a regular rhythm
- > Extension to using dedicated protocols: NTP, PTP
 - Packets may not arrive regularly, but **timestamps** mean time information can be extracted
 - Timing information contained in the arrival/departure time of the packets
 - Two-way or one-way protocols
 - Timing recovery process requires PDV filtering
- > Time and frequency can be distributed from point A to point B

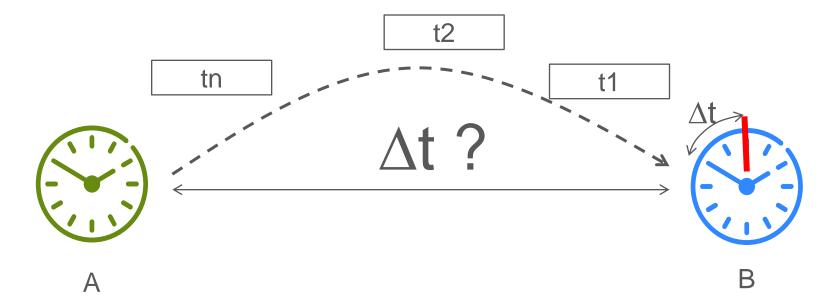
PACKET-BASED METHODS



From ITU-T Recc. G.8261

- > Timing information carried by dedicated timing packets:
 - -Network Time Protocol (NTP) IETF RFC 5905
 - -Precision Time Protocol (PTP) IEEE1588-2008

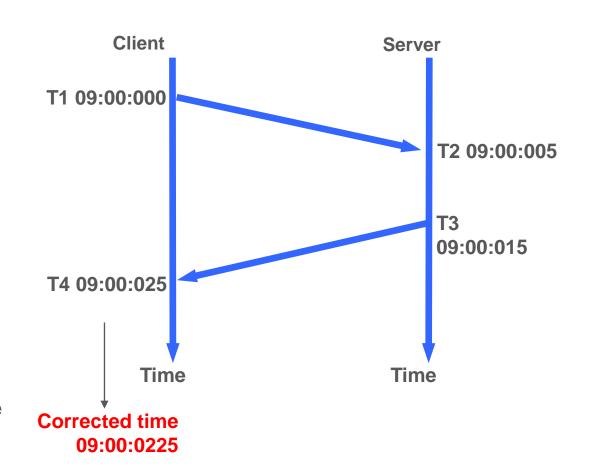
PACKET-BASED EQUIPMENT CLOCK


Concept of «Packet Selection»:

-Pre-processing of packets before use in a traditional clock to handle PDV

TWO-WAYS TIME TRANSFER

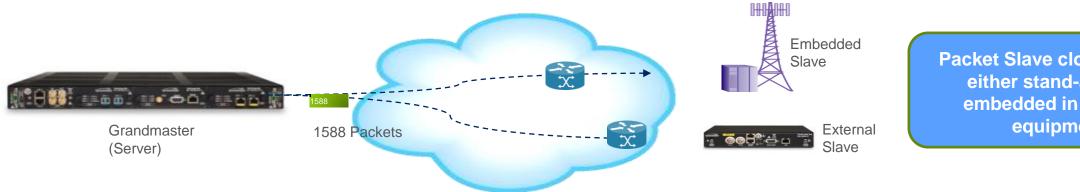
Delivery of Time synchronization requires also the knowledge of «transit delay» from A to B



- > Two-ways transfer protocols (round trip delay)
 - Assumption for symmetric channel

HOW NTP WORKS

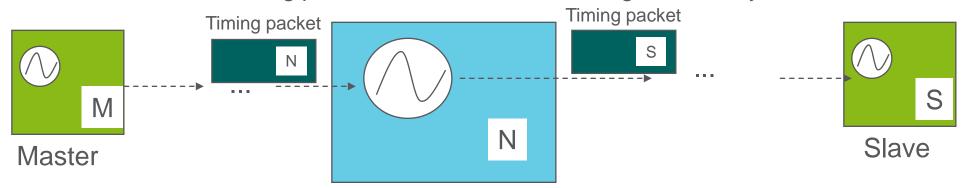
- > T1 Originate Timestamp
 - Time request sent by client
- T2 Receive Timestamp
 - Time request received by server
- > T3 Transmit Timestamp
 - Time reply sent by server
- > T4 Destination Timestamp
 - Time reply received by client
- > Round Trip Delay=(T4-T1)-(T3-T2)
 - Round Trip Delay =25-10=15
- > Clock Offset= [(T2-T1)-(T4-T3)]/2
 - Clock Offset =[5-10]/2= -2.5
 (Clients actual time when reply received was therefore 09:00:0225)
- > Key Assumptions:
 - One way delay is half Round Trip (symmetry!)
 - Drift of client and server clocks are small and close to same value
 - Time is traceable



NTP NETWORK ARCHITECTURE **GPS** Satellite Stratum 1 ____ Time Server Stratum 2 Router Router Server Stratum 3 Router Server Server Computer Computer Computer Computer Computer Computer Computer

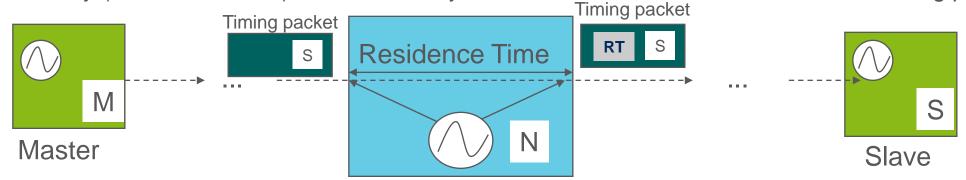
IEEE 1588-2008 PTPV2 OVERVIEW

- > The **Grandmaster** "reference clock" sends a series of time-stamped messages to slaves.
- > Slaves process the round-trip delay & synchronize to the Grandmaster.
- > Frequency can be recovered from an accurate time of day reference (but **L1 can also be used** ...)
- > Best Master Clock Algorithm to define the hierarchy
- Accuracy is possible by means of:
 - Proper packet rate (up to 128 per second)
 - Hardware time-stamping (eliminate software processing delays)
 - Timing support in the network (e.g. transparent clocks, boundary clocks)


Packet Slave clocks can be either stand-alone or embedded in network equipment

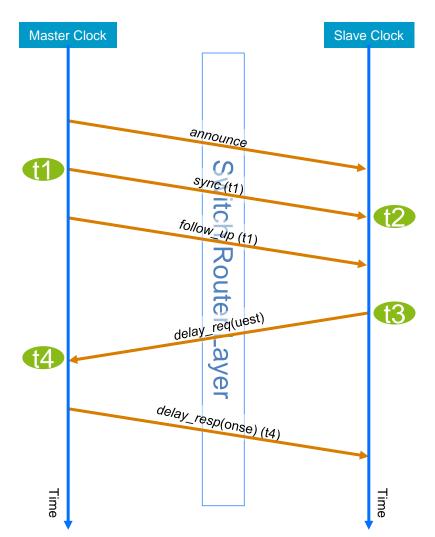
Note: IEEE 1588 under revision (planned 2017)

TIMING SUPPORT



Timing packets are terminated and regenerated by N

e.g. IEEE1588 Boundary Clock, NTP Stratum Clock


Latency (Residence Time) is calculated by NE and the information is added in the timing packet

e.g. IEEE1588 Transparent Clock

PTP TIME TRANSFER TECHNIQUE

Data At Slave Clock Leap second offset t2 (& t1 for 1-step) t1,t2 t1, t2, t3 t1, t2, t3, t4

Round Trip Delay

$$RTD = (t2 - t1) + (t4 - t3)$$

Offset:

(slave clock error and one-way path delay)

 $Offset_{SYNC} = t2 - t1$

 $Offset_{DELAY\ REQ} = t4 - t3$

We assume path symmetry, therefore One-Way Path Delay = RTD \div 2

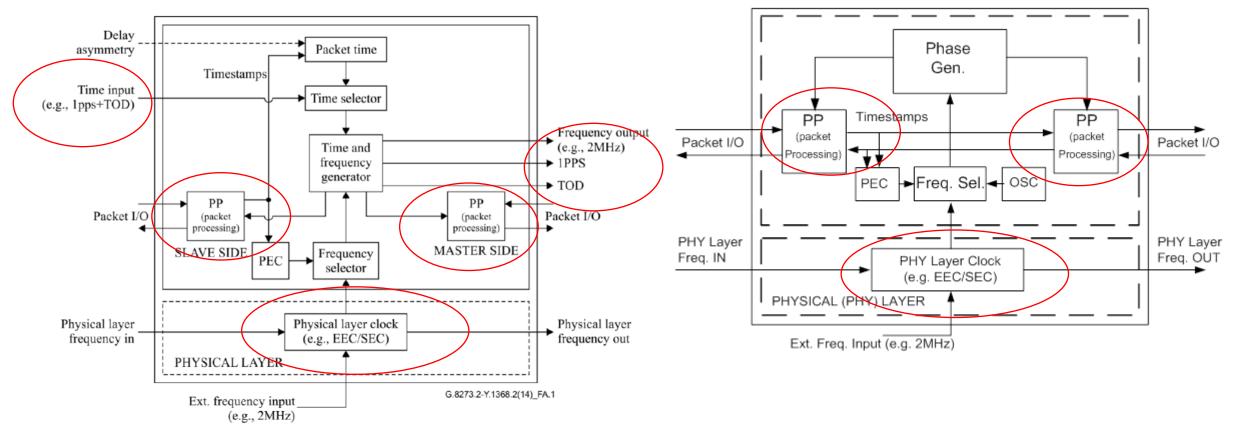
Slave Clock Error = $(t2 - t1) - (RTD \div 2)$

Notes:

- 1. One-way delay cannot be calculated exactly, but there is a bounded error.
- The protocol transfers TAI (Atomic Time).
 UTC time is TAI + leap second offset from the announce message.

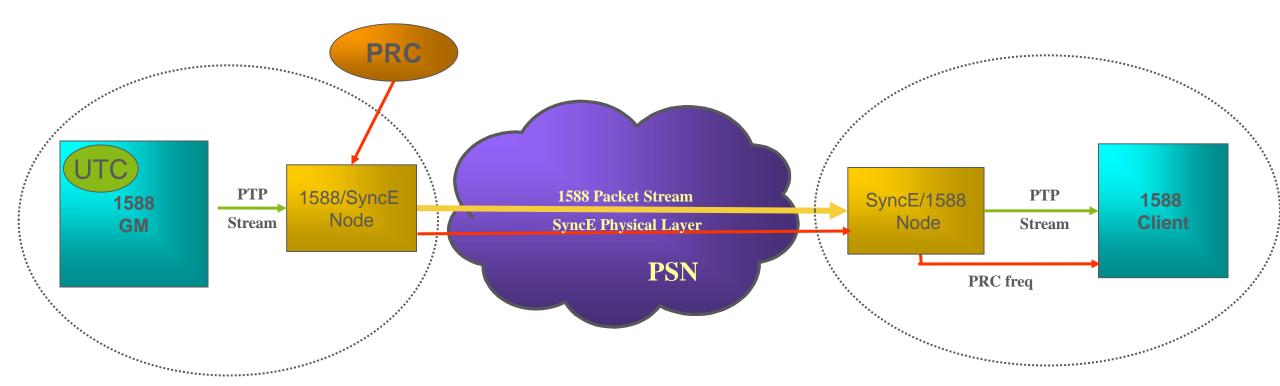
The process is repeated up to 128 times per second. (Announce rate is lower than Sync rate)

Timing in Packet Networks | 2016-06-12 | Page 16


"THE TELECOM PROFILE" (G.8265.N/G.8275.N)

- A profile is a subset of required options, prohibited options, and the ranges and defaults of configurable attributes
 - e.g. for Telecom: Update rate, unicast/multicast, etc.
- > PTP profiles are created to allow organizations to specify selections of attribute values and optional features of PTP that, when using the same transport protocol, inter-works and achieve a performance that meets the requirements of a particular application
- Other (non-Telecom) profiles:
 - IEEE C37.238 (Standard Profile for Use of IEEE 1588 Precision Time Protocol in Power System Applications,)
 - IEEE 802.1AS (Timing and Synchronization for Time-Sensitive Applications in Bridged Local Area Networks); Under revision (targeting a full compliance with the next IEEE 1588 revision)

T-BC AND T-TC CLOCK MODELS



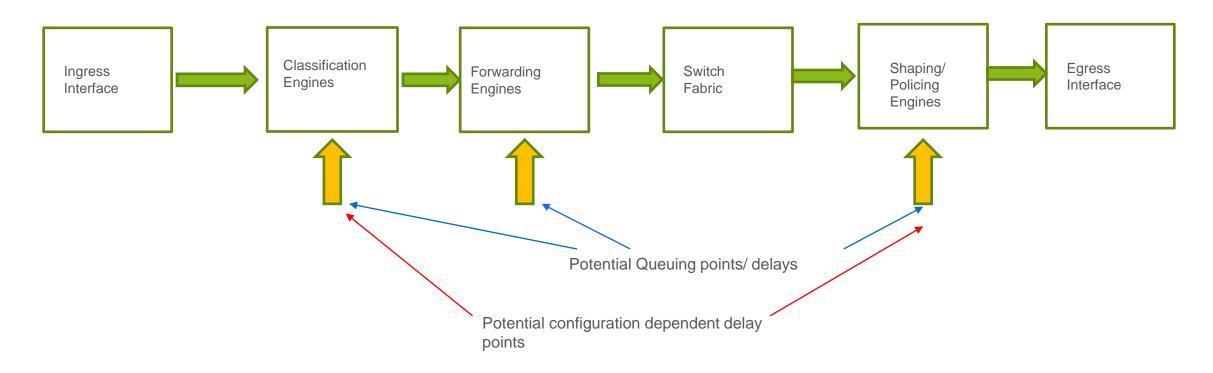
- G.8273.2 and G.8273.3 provide models for the Telecom Boundary and Transparent Clocks
 - -Frequency sync via physical layer initially considered

COMBINED PTP-SYNCE

> SyncE as "frequency assistance" to 1588

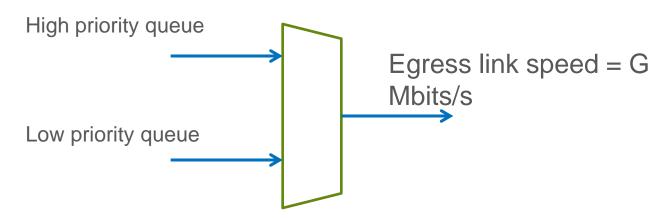
- > Gives immediate "frequency lock" to 1588 client
- > SyncE & 1588 functionality may be in the same node/element
- SyncE might be used for "Time sync holdover"

IMPAIRMENTS IN PACKET NETWORKS



- > Packet delay variations [PDV], depending on
 - -Network dimension
 - -Traffic load
 - -QoS
- > Path dependent aspects
 - -Physical path **asymmetry** (*particularly relevant for time synchronization*)
 - -Path rerouting
- > Interactions between the packet streams

PACKET DELAY VARIATION (PDV)


- > Queuing
- > Equipment Configuration
- > Priority/ QoS

PACKET DELAY VARIATION (PDV), CONT.

> Head of line blocking

MTU size M byte Strict priority queue

$$\left(\Delta_{pp}\right)_{\max} \geq \left(\frac{M}{G}\right) \mu s$$

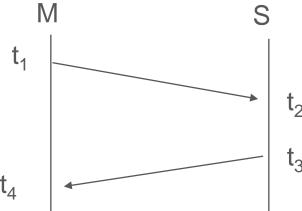
- A packet arrives in the HPQ, just when a packet from the LPQ has begun transmission
- The packet from HPQ is blocked till the LPQ packet is transmitted
- With more complex prioritization scheme the delay due to head of line blocking could vary significantly
- Tools being specified by IEEE 802.1 to address this issue (e.g. frame preemption, scheduled traffic)

Ex. : at 1Gbit/s, 1000 byte packet = 8 x 1000 / 1000 x 10^6 = $8 \mu s$

PATH DEPENDENT IMPAIRMENTS

Asymmetry

- -Static difference in paths between the forward and reverse paths. E.g difference in lengths of fiber
- -Forward and reverse paths pass through different node


> Rerouting

-Leads change in path delays and can "confuse" the algorithms.

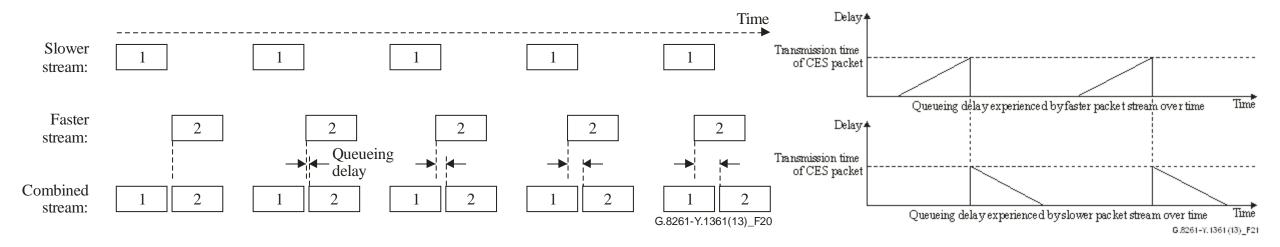
TIME SYNCHRONIZATION VIA PTP: ASYMMETRY RELATED IMPAIRMENTS

The basic principle is to distribute Time sync reference by means of two-way time stamps exchange

Time Offset= $t_2 - t_1$ – Mean path delay Mean path delay = $((t_2 - t_1) + (t_4 - t_3))/2$

- As for NTP, also in case of PTP, symmetric paths are required:
 - -Basic assumption: $t_2 t_1 = t_4 t_3$
 - Any asymmetry will contribute with half of that to the error in the time offset calculation (e.g. 3 μs asymmetry would exceed the target requirement of 1.5 μs)

ASYMMETRY DUE TO THE TRANSPORT TECHNOLOGIES

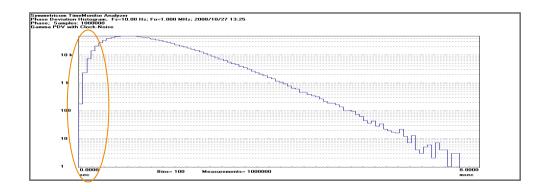


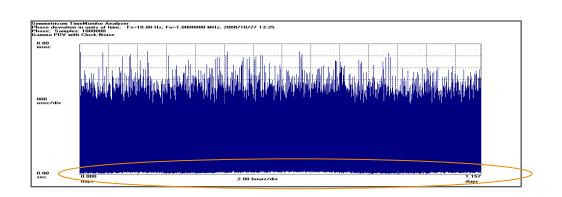
- Different paths in Packet networks
 - -Traffic Engineering rules in order to define always the same path for the forward and reverse directions
- Different Fiber Lengths in the forward and reverse direction
 - -Additional problem: DCF (Dispersion Compensated Fiber)
- Different Wavelengths used on the forward and reverse direction
- > Asymmetries added by specific access and transport technologies
 - -GPON
 - -VDSL2
 - -Microwave
 - -OTN

INTERACTION OF FLOWS

- > This phenomenon occurs whenever two "non random" packets share a common path or transmission resource
- > Two illustrative examples
 - -2 streams converging on egress of CES Functions
 - -The PTP Grandmaster & (Multiple slaves) (OCs) communicating over "unaware" networks
 - Could easily create "bottle necks" even on unloaded networks

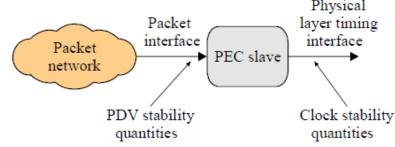
KEY ASPECTS OF PERFORMANCE



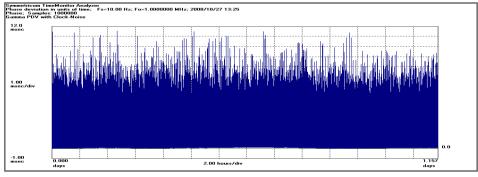

- Packet Delay Variation (PDV) is a major contributor to "clock noise"
 - Related to number of hops, congestion, line-bit-rate, queuing priority, etc. Time-stamp-error can be viewed as part of PDV
- Clock recovery involves low-pass-filter action on PDV
 - Oscillator characteristics determine degree of filtering capability (i.e. tolerance to PDV)
 - Higher performance oscillators allow for longer time-constants (i.e. stronger filtering)
 - Lower performance (less expensive) oscillators may be used (may require algorithmic performance improvements)
- Performance improvements can be achieved by
 - Higher packet rate
 - Controlling PDV in network (e.g. network engineering, QoS)
 - Timing support from network (e.g. boundary clocks in PTP)
 - Packet selection and/or nonlinear processing

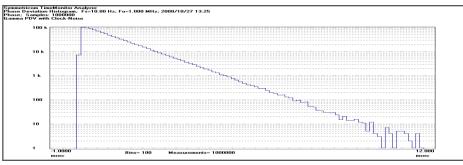
NOTION OF "BEST PACKETS"

- > Impact of PDV can be mitigated by means of a suitable classification and **selection** of packets
- The "minimum delay" approach is presented as an example. Depending on the network characteristics other approaches may be more suitable
- The assumption that the path is constant over the interval of observation implies a PDV with a distribution function with a slowly changing floor (i.e. minimum delay that a packet can experience)
- In many cases it has been observed that a reasonable fraction (e.g. x%) of the total number of packets will traverse the network at or near this floor
- Using only these packets in the timing recovery mechanism would allow to significantly reduce the impact of the PDV on the quality of the recovered reference timing signal

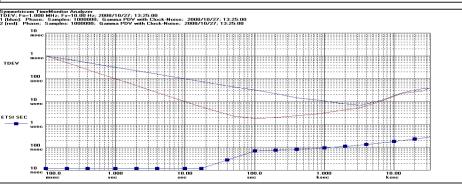


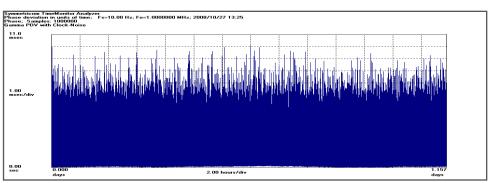
SYNC METRICS IN PACKET NETWORKS

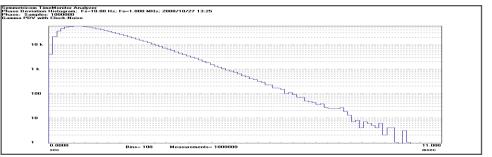

- The Network Element clock output metrics as per TDM networks (e.g. MTIE/MRTIE/TDEV)
 - Some distinctions are required in case of packet clock integrated in the Base Station (no standardized output MTIE/TDEV by 3GPP)
- Specific Metrics have been defined to better characterize the behavior of packet networks (PDV) delivering the timing reference
 - Metrics that associate PDV with Frequency Offset or phase variation
 - Tolerance masks/Network limits are used by network operators and clock manufacturers
 - Packet selection methods can be justified

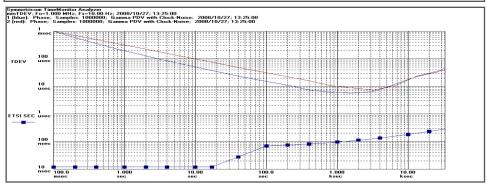

NEED FOR NEW METRICS

- Traditional IP networks utilized just peak-to-peak "jitter" as the sole time/timing related performance metric (e.g. 95% of delay variation samples <10 ms)
- > This is generally not sufficient for the purpose of timing recovery as is seen in the following example.
 - The synthetic PDV sequence has a peak-to-peak measure of approximately 10ms and packet rate of 10Hz
 - The PDV, pdf, and TDEV/minTDEV are shown in the following charts
 - One TDEV mask (ETSI SEC) is shown in the charts to provide a frame of reference
 - Exception: Stable oscillator (e.g. Stratum 2) and only frequency required
- Timing is generally recovered using selected "best" packets; this is not visible in the peak-to-peak measurements
 - Other variations include metrics derived from the distribution of the packet-arrival times (e.g. Mode, median, etc.)
- Suitable metric sets must include those that characterize amplitude distribution (including peak-to-peak) and spectral distribution.


PEAK-TO-PEAK JITTER NOT SUFFICIENT


phase




pdf

TDEV and minTDEV

Peak-to-peak jitter = 11.5ms

Peak-to-peak jitter = 10ms

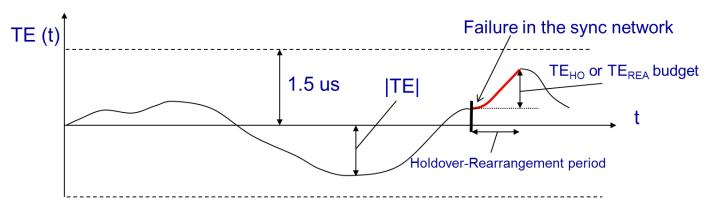
PDV METRICS

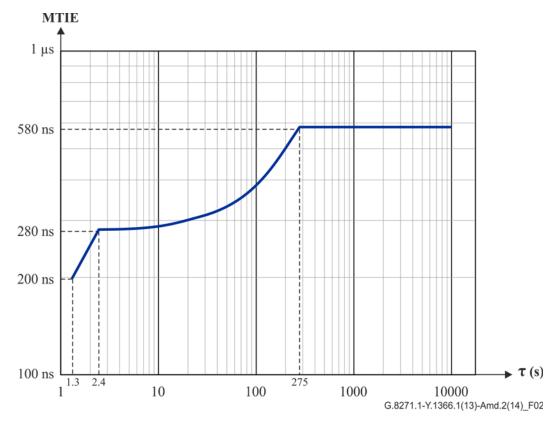
- Several metrics have been defined by ITU-T:
 - These include minTDEV, MATIE, MAFE,
 percentileTDEV, bandTDEV, clusterTDEV, FPP, etc.
- > minTDEV is analogous to TDEV
 - TDEV utilizes the average over windows
 - minTDEV utilizes the minimum over windows
- MATIE is related to MTIE
 - MTIE computed directly on the time error sequences $\{x_k\}$ or $\{y_k\}$ is not that meaningful because of large "jitter" (PDV)
 - MATIE is computed on the sequence following the pre-filtering (packet-selection) and emulates the low-pass nature of the traditional clock model (bandwidth / time-constant)
- Metrics Studying floor delay packet population
 - FPP, Floor Packet Percent (selected for defining network performance objectives for frequency sync)

FLOOR PACKET PERCENTAGE

) Family of metrics based on counting amount of packets, observed for any window interval of t seconds within a fixed cluster range starting at the observed floor delay and having a size δ

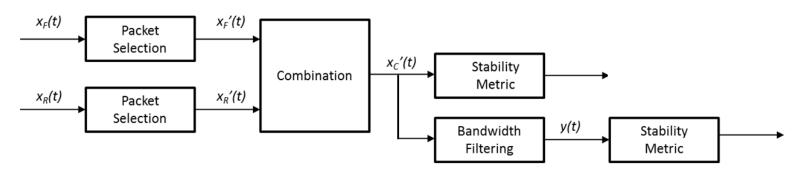
- > Floor Packet Percent (FPP) defined in terms of percentage of packets meeting these criteria
- > Basis for the G.8261.1 network limits (150 / 75 us)

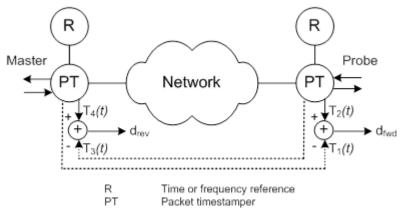

TIME SYNC PERFORMANCE METRIC: FULL TIMING SUPPORT


Max abs(TE) for combined dynamic and constant time error

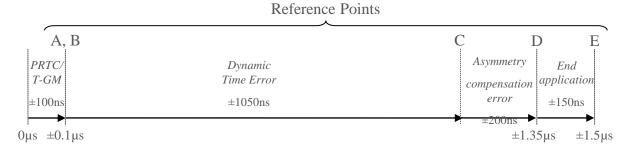
> MTIE (low frequency) and «peak-to-peak TE amplitude» (high frequency) for

dynamic time error


 $\mathsf{TE}_{\mathsf{HO}}$ applicable to the network (End Application continues to be locked to the external reference) $\mathsf{TE}_{\mathsf{REA}}$ applicable to the End Application (End Application handles short rearrangement periods)



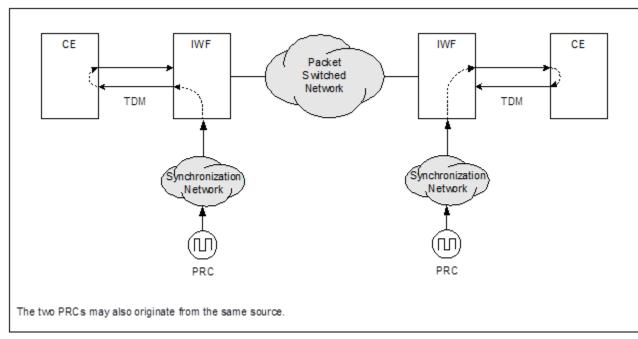
TIME SYNC PERFORMANCE METRIC: PARTIAL TIMING SUPPORT



- Metric agreed : «Packet selected TE»
 - Packet Selection criteria;
 window interval of 200s and a percentage of 0.25% as initial assumptions for high stability clocks
 - Applicable to both «APTS» (Assisted Partial Timing Support) and «PTS»:
 - > Peak-to-peak pktSelectedTE for APTS, max |pktSelectedTE| for PTS.

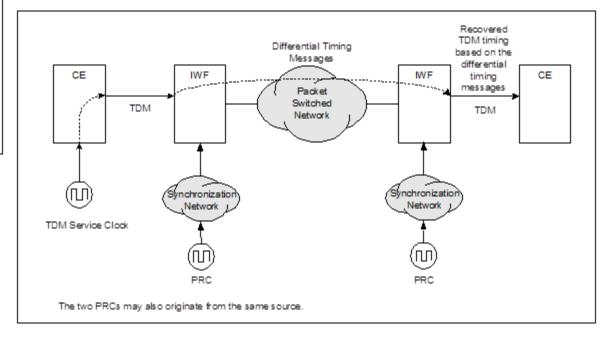
- > 2 classes of network limits addressing different end applications cases.
- > APTS Network Limit: 1.35µs in terms of maximum absolute time error (at the output of the clock).
- > PTS Network Limits: under study
- > MTIE mask also needed

REFERENCES

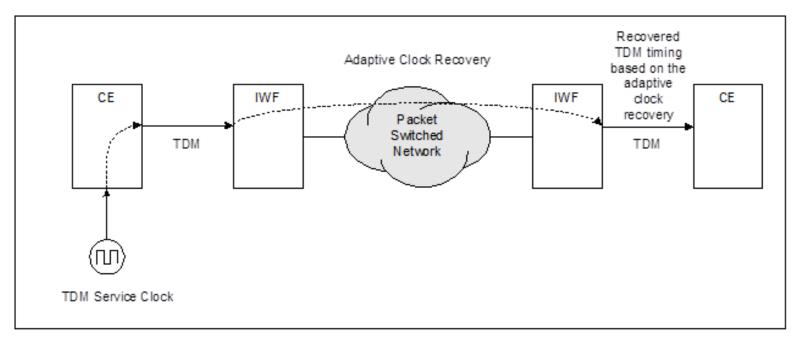


- > Packet Timing in ITU-T: ITU-T G.826x series, G.827x series,
- > ITU-T general definitions: G.810, G.8260
- > NTP: IETF RFC 5905/6/7/8
- > PTP: IEEE 1588-2008
- > CES: RFC 5087, RFC 5086, RFC4533, ITU-T Y.1413, ITU-T Y.1453, MEF3, MEF 8

ERICSSON

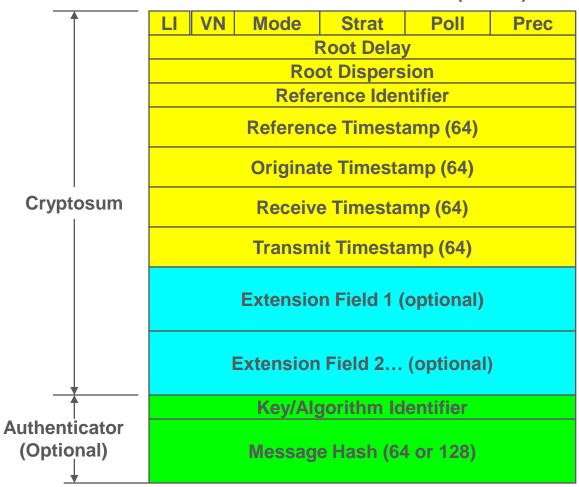

CIRCUIT EMULATION SYNC SOLUTIONS: PRC AVAILABLE AT THE EDGES OF THE PACKET NETWORK

Network Synchronous


From ITU-T Recc. G.8261

Differential

CIRCUIT EMULATION: ADAPTIVE METHODS


From ITU-T Recc. G.8261

- No PRC traceable reference available at the edge of the packet network!
 - > Frequency sync recovered based on arrival time of the packets ...

NTP PROTOCOL HEADER AND TIMESTAMP FORMATS

NTP Protocol Header Format (32 bits)

VN version number (4)
Strat stratum (0-15)
Poll poll interval (log2)
Prec precision (log2)

NTP Timestamp Format (64 bits)

Seconds (32) Fraction (32)

Value is in seconds and fraction since 0^h 1 January 1900

NTPv4 Extension Field

Field Length Field Type

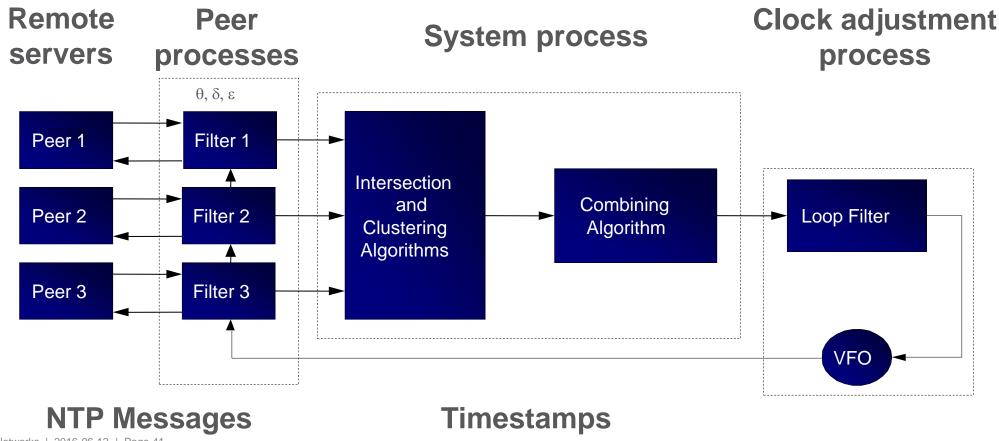
Extension Field

(padded to 32-bit boundary)

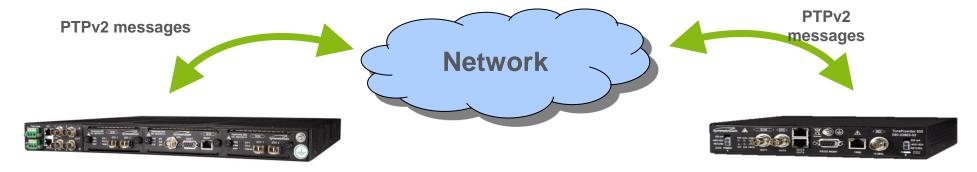
Last field padded to 64-bit boundary

NTP v3 and v4
NTP v4 only
authentication only

Authenticator uses DES-CBC or MD5 cryptosum of NTP header plus extension fields (NTPv4)


Timing in Packet Networks | 2016-06-12 | Page 40

NTP INPUTS AND OUTPUTS


Inputs - 3 x sources of equal or higher quality time from peers or servers

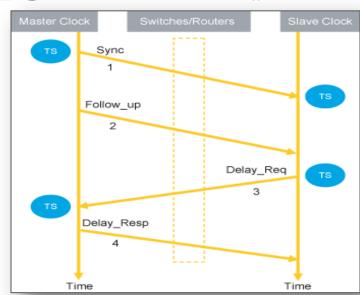
Output - Adjusted time available to peers and clients

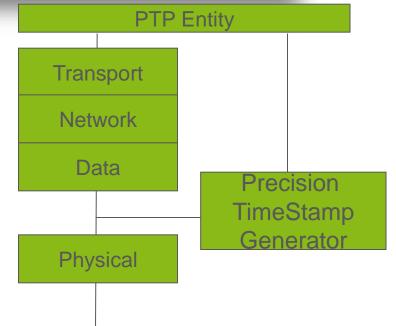
PTPV2 TIMING MESSAGE TYPES

- The Grandmaster (Server) sends the following messages:
- Timing Messages (3 types):
 - Sync message
 - Follow_Up message (optional)
 - Delay_Resp(onse)
- Announce message (GM status)
- Signaling (2 types)
 - Acknowledge TLV (ACK)
 - Negative Acknowledge TLV (NACK)

- The Slave (Client) sends the following messages:
- > Timing Messages
 - Delay_Req(uest)
- Signaling (3 types)
 - Request announce
 - Request sync
 - Request delay_resp(onse)

PTP PROTOCOL AND HW TIMESTAMPING



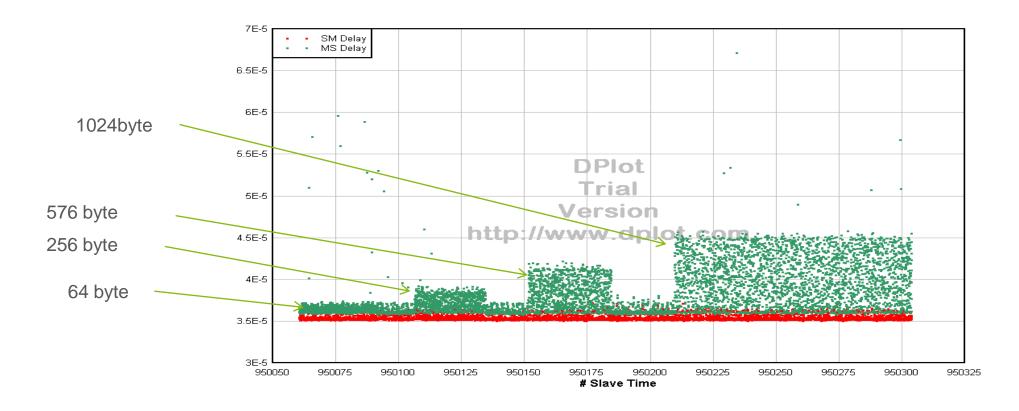

Message Exchange Technique

- Frequent "Sync" messages broadcast between master & slaves, and...
- Delay measurement between slaves and master.

> Hardware-Assisted Time Stamping

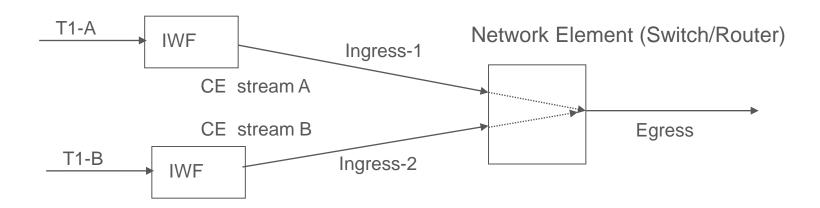
- Time stamp leading edge of IEEE 1588 message as it passes between the PHY and the MAC.
- Removes O/S and stack processing delays.
- Master & Slave use hardware assisted time stamping.

PTPV2 ANNOUNCE MESSAGES

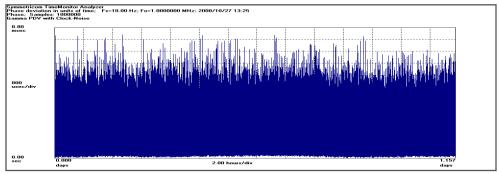

- Announce messages hold information about the status, precision and accuracy of the Grandmaster
 - Changes in values within Announce packets reflect changes in conditions at the GM
- > Transmitted to all Slave clocks at regular intervals (1 per second is normal)
 - Slave clocks use information in the Announce message in the Best Master Clock algorithm or to switch GM if
- > Holds the following information used by Slave clocks:
 - Leap second information
 - GM clockClass lower values mean a higher class of clock
 - GM Accuracy ranges from 100ns to Unknown
 - **GM TimeSource** GPS, Arbitrary, Unknown
 - Time Traceable Flag True/False
 - Frequency Tracable Flag True/False
 - PTP TimeScale Flag True/False
- Other information held also: Leap second indicator, Two-step clock mode, etc.

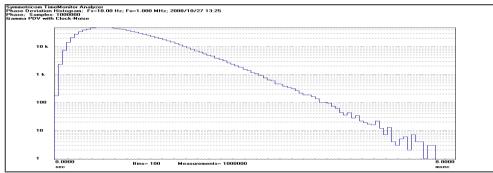
```
Destination
                 192.168.1.11
                                       192.168.1.12
Internet Protocol, Src: 192.168.1.11 (192.168.1.11), Dst: 192.168.1.12 (192.168.1.12)
User Datagram Protocol, Src Port: ptp-general (320), Dst Port: ptp-general (320)
Precision Time Protocol (IEEE1588)
 .... 1011 = messageId: Announce Message (0x0b)
 messageLength: 64
 subdomainNumber: 0
         .... .... = PTP profile Specific 2: False
                        = PTP_UNICAST: True
                   .... = PTP_TWO_STEP: False
                       = TIME TRACEABLE: True
    .... 1... = PTP_TIMESCALE: True
    .... .... ... ..0. = PTP_LI_59: False
 clockIdentity: 0x00b0aefffe000006
  sequenceId: 1059
```

PACKET DELAY VARIATION (PDV), CONT.

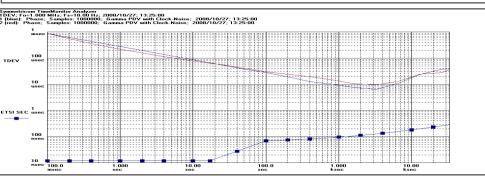


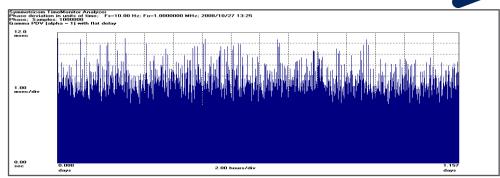
Equipment implementation specifics e.g. the Delay variation through a single piece of equipment, with packet sizes

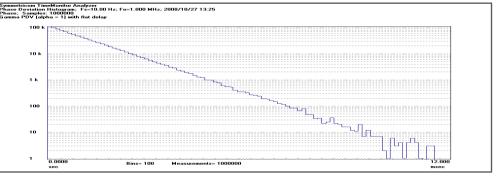

INTERACTION OF CBR STREAMS

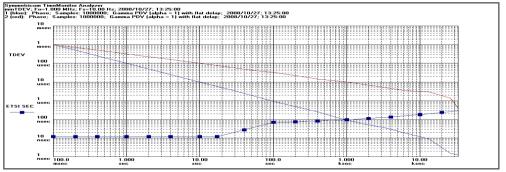


- Assumptions:
 - Streams A and B represent Circuit Emulation of T1 / E1-A and T1/ E1-B
 - Each packet is same size and the packet rates are nominally equal
 - The bandwidth of the egress is high (\sim 1 Gbps) (NO bandwidth starvation). Each packet occupies \sim 2 μ sec in the egress stream
- > Stream A will experience a (variable) delay if it arrives when a stream B packet is being transmitted and viz.

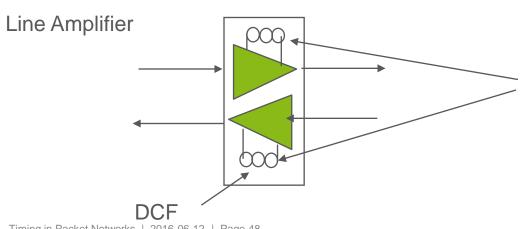

PEAK-TO-PEAK JITTER NOT SUFFICIENT







TDEV and minTDEV


Peak-to-peak jitter = 11.5ms

Peak-to-peak jitter = 8.3ms

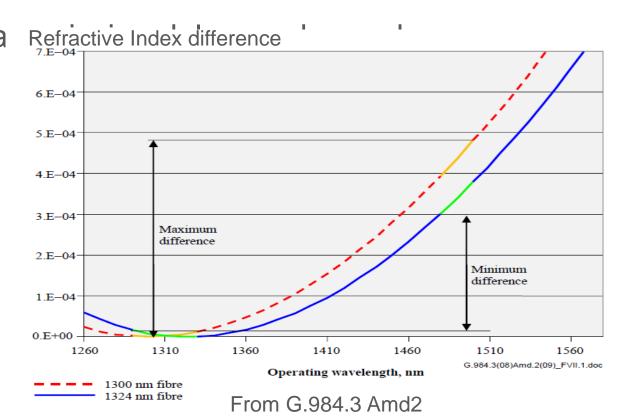
DIFFERENT FIBER LENGTH AND DCF

- > Fiber length asymmetry is one major issue
 - -About 2.5ns of inaccuracy per meter of asymmetry (related to group delay, about 5 ns/m)
- A line amplifier may embed a Dispersion Compensating Fiber (DCF) to compensate for the chromatic dispersion of the different wavelengths
 - -the length of the fiber within DCF modules to compensate the same length of line fiber may vary significantly

Might introduce hundreds of metres asymmetries over some tens of Km

USE OF DIFFERENT WAVELENGTHS

Group Delay depends on the wavelength and different wavelength are used on the forward and reverse path


-V = c/n (c= speed of light, n = group refractive index, depends on λ)

$$A = d_f - d_r = L * (n_r - n_f)/c,$$

-d_f and d_r are the forward and reverse tra the related refractive indexes

Example:

 λ_r = 1529.94 nm; n_r / c= 2000 ps/Km λ_f = 1611.79 nm; n_f / c = 3700 ps/Km L= 50 Km A= 1700 x 50 ps = 85 ns

