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Atomic Frequency Standards:
Produce Frequency Locked to an Atomic Transition
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Basic Passive Atomic Clock

Obtain atoms to measure

Depopulate one hyperfine level

Radiate the state-selected sample with frequency v
Measure how many atoms change state

Correct v to maximize measured atoms in changed
state



Block Diagram of Atomic Clock
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Types of Atomic Clocks

Cesium thermal beam standard
— Best long-term frequency stability

Rubidium cell standard

— Small size, low cost

Hydrogen maser

— Best stability at 1 to 10 days (short-term stability)
— Expensive several $100K

Chip Scale Atomic Clock (CSAC)

— Very small size, low power



Allan Deviation

Frequency Stability of a Cesium Standard

(No frequency drift removed)
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Rubidium Standard

* Two major differences from a cesium standard

1. Cell standard (doesn’t use up rubidium)

2. Optically pumped (no state selection magnets)

* Used where low cost and small size are important



Frequency Stability of a Rubidium Standard
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Something New!

* Chip Scale Atomic Clock (CSAC)

1. Cesium cell standard
2. Coherent Population Trapping (CPT)
* Very small size and low power consumption,

but better performance than a quartz
oscillator



Cheap Quartz,

Oscillator Comparison

Wristwatch, computer,

TCYX0 10° ~1011 ~1011 107to 108 cell phone, household
clock/appliance,...
Mo Network sync, test
- -8 ~10-12 ~10-12 -9 -11 i
Quartz, OCXO 10 10 10 10°to 10 equipment, radar,
commes, nav,...
Wireless comms
Rb Oscillator ~107? ~1011 ~1013 1011to 1013 infrastructure, lab
equipment, GPS, ...
Timekeeping, Navigation,
Cesium Beam il ~10-11 ~1014 nil GPS, Science, Wireline
comms infrastructure,...
Hydrogen ~qQ11 ~1013 ~10-15 105 to 10°16 Timekeeping, Radio
Maser astronomy, Science,...




Oscillator Comparison (continued)

Cheap Quartz,

Maser

~ 3 = ~ ~ 10° =
TCY%0 ~1cm 10g 10 mW 10%s/year S1s
Hi-quality ~ 50 cm? ~ 500 ~10 W ~ 10Ks/year ~ $100s
Quartz, 0CXO | TRl ~ TR ~
Rb Oscillator ~ 200 cm3 ~500g ~10W ~ 10Ks/year ~ $1000s
Cesium Beam ~ 30,000 cm3 ~ 20 kg ~50 W ~ 100s/year ~ S10Ks
PTG ~1m? ~ 200 kg ~100 W ~ 10s/year ~ $100Ks




Conclusions: Atomic Standards

« Rubidium, cesium, and hydrogen atomic frequency
standards share a common theme: the stabilization

of an electronic (quartz) oscillator with respect to an
atomic resonance.

 Although the use of atoms brings with it new
guantum mechanical problems, the resulting long-

term stability is unmatched by traditional classical
oscillators.



Frequency Accuracy:

History of NIST Primary Frequency Standards
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The Generation of UTC: Time Accuracy
Any Real Time UTC is only a Prediction,
A PLL with a one-month delay

delay

delay
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Time and Frequency Transfer:
How to Deliver a Timing Reference

 Time Transfer Accuracy Requires Calibrating Delays

- Imagine writing a letter: “It is now 2 PM- set
your watch”

- Seal it in an envelope and drop it in a mail box

- Only useful if you know how long it took to get
to you

- Now suppose you timestamped when you
sealed the letter and the receiving person
timestamped when he got it...

* Time Stability = Frequency Accuracy



Clock 1 Clock 2

Clock 1 Clock 2
Systematics Delay, Measurement  Systematics

and Noise Noise and Path and Noise
Perturbations



Clock 1

Clock 2

Clock 1
Systematics
and Noise

Lock Loop
Systematics and
Noise:
Contributions from
Delay, Measurement
Noise and Path
Perturbations

Clock 2
Systematics
and Noise



Two -Way Comparison System
(e.g. IEEE1588 - PTP)

Measure t,,= Measure t);=

Clock1-Clock?2 Clock2-Clock1
+0y +0s; Clock 2

Clock 1 Clock 2

Systematics Measurement Noise Systematics
and Noise and Path Perturbations and Noise

Largely Reciprocal:
dy; = dy,
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The Family of Global Navigation Systems

GPS Galileo GLONASS  Beidou/Compass
US EU Russia China
(24+, Now 30) (27, Now 3?) (24, Now 24) (35, Now 147?)

I GLONASS




Two Messages About GNSS

1. GNSS are extremely useful
1. Constellations are growing

2. Provide reliable, extremely accurate real-time
UTC time and frequency for mostly free

3. Excellent navigation
4. A global > $100B industry

2. GNSS signals are dangerously vulnerable to
both accidental and intentional interference



GNSS Systems: General Properties
Position, Navigation, Timing (PNT)

Four + synchronized timing signals from known locations
in space required for navigation

Two + frequencies measure ionosphere
Control, Space, User Segments
Open and Restricted Services

All signals are weak and clustered in the spectrum

— Allows interoperability
— But also makes it is relatively easy to jam GNSS and spoof



Time from GNSS: Noise Sources

System Time

Problems at Receiver:

Coordinates
Multi-path Ephemeris
Interference error

Delays in cables

Delay through receiver

Receiver software\

//QA\

‘K-
Q\ J = \ }nosphere

Troposphere



Time From GNSS

* Clocks on Satellite Vehicles (SVs) are free-
running

— Data provides the offset in Time and Frequency
— System time is offset from UTC

* The positions of the satellite and receiver are
needed for the delay

* SV Clocks and positions are predicted and
uploaded, for GPS about once per day



Spectra of GNSS’s
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GNSS-aided Time and Frequency Systems

Quartz
- T/F System Crystal
k- vy ~Oscillator
" GNSS Tune Qz
GNSS S . Output
A Revr Compare Osc. > Furept)z;{
.. Cop
v i
GPS Rubidium Vapor
Rovr |B Atomic Oscillator.
Tune | ¢ outnut Rb oscillator 100 to
Rb Vapor *Qz , ~Jtpu 1000 times better
Compare Phy Pkg Osc. Freq Holdover
T Performance

T/F System

Courtesy H. Fruehauf, ViaLogy LLC
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Conclusions

Atomic clocks are accurate and/or stable by design
— Cs. can be a primary frequency standard
— Others can be very stable

Time transfer requires calibration of the delay
— Two-way cancels the delay if it is symmetric
— GNSS measures the delay
— Frequency transfer only requires stable delay

GNSSs are very accurate both for time and frequency, many signals free
for use, and are very reliable

— Perhaps their greatest advantage and disadvantage!

— Signals are subject to interference



Thanks for your attention!

Extra slides follow
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Clock Stability

Clock (in)stability is given by:

of

Gl L 1
O = foc SN (GIA)XSIN)

Atomic Line Q Signal to Noise

Clock stability can be improved by:
Increase Ramsey (observation) times (decrease Aw=1/T
Improve the S/N (more atoms!)
Increase the frequency of the clock transition (optical?)

Ramsey)



Cesium Standard
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GAS, CONTAINING AN EQUAL
AMOUNT OF THE THWO
KINDS OF ATOMS

KIND 1 - ATOMS
(LOWER STATE)

ATOMIC BEAM /\/\
N

ATOMIC BEAM MAGHET KIND 2 - ATOMS
SOURCE (STATE SELECTOR) (UPPER STATE)

——
VACUUM CHAMBER
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« Atoms pass through a Ramsey cavity in a magnetic field to
be exposed to microwaves at frequency v = 9.193 GHz

« A second magnet selects atoms which have made the transition

* The number of detected atoms is used to tune the frequency



Cesium Standard
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Commercial Cesium Standards
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*Courtesy of Robert Lutwak, Symmetricom



087Rb
slamp

Rubidium Standard

*Magnetic shield

° 85Rb
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* Cell
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«Adapted from figure by John Vig




Optical Microwave Double Resonance

37 Rb

Simplified Rb energy level diagram
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EQUAL AMOUNT OF THE
THO KINDS OF ATOMS

REFLECTOR-MIRROR

[ <)

FILTER LAMP

|
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A
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STATE SELECTED
THROUGH ACTICN
OF THE LIGHT

« Optical pumping is used to deplete one hyper-fine level

* Light tuned to the transition frequency from “A” to the
« unstable excited state puts all of the atoms in the
e hyper-fine state “B”
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Commercial Rubidium Standards

*Frequency Electronics
» FE-5680A

«Stanford Research PRS10

*Quartzlock E10

*Temex SR100

*Accubeat AR-70A

*PerkinElmer GPS RAFS

*Symmetricom X72

*Courtesy of Robert Lutwak, Symmetricom



Hydrogen Maser
(Active Standard)
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«Adapted from a figure by John Vig




Hydrogen Maser

(Active Standard)
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~ Output | Quartz Crystal |
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Fractional Frequency

Frequency Drift of a Commercial Cesium
Standard and a Hydrogen Maser
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Commercial Active Hydrogen Maser

*Courtesy of Robert Lutwak, Symmetricom



Allan Deviation

Frequency Stability of a Hydrogen Maser
(Frequency drift removed — 1x10-1%/day typical)

VSt0005.grf

1x10™ € T T TT T T T T T T T T Ty T T T TTTITEE
e | | | | | | | | E
L e | | | | | | | | .
1x102 b= N 0HzBW. L L
= AN | | | | | | | =
=P | | | | | | | .
[~ \ | | | | | | —
1x10™ £ | =
— | | —
- A | | =
| ‘ QA ‘ ‘ —]
1x107% :_77¢777\7 | | _
= | | 3 | | =
— | | | fig\if
- | | | -
1x10™ & ; < : =
E \ \ 15 : | Low 2nd order drlft:
1x107%8 IIHHA IIHHJ IIHHA |||mA L L1 ||nm‘|||nm|| Hnm| L L1

1x107" 1x10° 1x10' 1x10° 1x10®° 1x10* 1x10° 1x10° 1x10" 1x10°
T (sec.)



Primary Sources
for Time and Frequency

e Atomic Clocks

- ¢ Time and Frequency Transfer
* GNSS

e Conclusions

e Extra Slides



Time and Frequency Transfer:
How to Deliver a Timing Reference

* Time Transfer Accuracy Requires Calibrating Delays

- Imagine writing a letter: “It is now 2 PM- set
your watch”

- Seal it in an envelope and drop it in a mail box

- Only useful if you know how long it took to get
to you

* Time Stability = Frequency Accuracy



Time and Frequency Transfer

e Accuracy and Stability are the Concerns

— Time Transfer Accuracy Requires Calibrating
Delays

— Time Stability = Frequency Accuracy

e Continuous vs Intermittent Measurements



Clock 1 Clock 2

> <
Clock 1 _ Clock 2
Systematics Measurement Noise Systematics
and Noise and Path and Noise

Perturbations
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Clock 2

Clock 1
Systematics
and Noise

Lock Loop
Systematics and
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Measurement Noise
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Two -Way Comparison System
(e.g. IEEE1588 - PTP)

Measure t,,= Measure t);=

Clock1-Clock?2 Clock2-Clock1
+0y +0s; Clock 2

Clock 1 Clock 2

Systematics Measurement Noise Systematics
and Noise and Path Perturbations and Noise

Largely Reciprocal:
dy; = dy,



Two-Way has Four Time Stamps
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ldeal Two-Way Computation

Signal A: t3;= Clock2(t;) - Clock1(t,)
Signal B: t,,= Clock1(t,) — Clock2(t,)
Assume Clockl is correct, Clock2 has an offset or error E, and Delays, D, are
reciprocal
— Clockl1(t) =t;, Clock2(t) = t;- E
— Transmission times on local clocks: Clock2(t,)= Clock1(t,),i.e.t,=t, + E
— Reciprocal Delays: d,=d,; =D
Thent,=t, +E, t;=t,+D t,=t, + D
Then t;; = Clock2(t;) - Clock1(t) =t;-E-t;,=t;+D-E-t, =D-E
And t,,= Clock1(t,) — Clock2(t,) =t,— (t,-E)=t,+D—-(t,-E) =D+ E
Therefore
— D =% (t,+t;)
— E =% (tp-t3)



Synchronization vs Syntonization

Two Separate Concepts
Both called “Synchronization” in Telecom

Synchronization
Same Time

Same Phase
Phase Lock

Syntonization
Same Frequency
Frequency Lock = Phase Offset Unbounded



How to Characterize Attributes of
Time and Frequency Transfer Systems

Time Transfer Accuracy

1. Agreement with the “true” clock difference

2. Evaluate with a more accurate transfer system
3. Never better than stability

Time Transfer Stability -- Plot x(t)
1. TDEV, (1)
2. Spectrum, S,(f)

Frequency Transfer Accuracy
1. Directly related to time transfer stability
2. A function of averaging time, t, and processing

Frequency Transfer Stability-- Plot y(t)
1. ADEV, c,(1)

2. Spectrum, S (f)

3. Estimate Drift



Summary:
Time and Frequency Transfer Systems

Time: Calibrate the Delay

Stability: Keep the delay constant

* |ssues
— Accuracy
— Stability
— Uncertainty
— Systematic vs Random Deviations

e Syntonization vs Synchronization
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GNSS References

GPS
— CGSIC 2013 http://www.gps.gov/cgsic/meetings/2013/
— Coast Guard Nav Center http://www.navcen.uscg.gov/

Galileo http://www.gsc-europa.eu/system-status/Constellation-
Information

Glonass
http://www.sdcm.ru/smglo/grupglo?version=eng&site=extern

Beidou:
— IGS page http://igs.org/mgex/Status BDS.htm

General
— GPS World http://gpsworld.com/
— Inside GNSS http://www.insidegnss.com/
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