



#### **Tim Frost**

WSTS, April 16, 2013

# **Agenda**



- How hard can it be?
- Satellite Time Distribution
- Network Time Distribution
- Combining the Two



# How hard can it be?



# **Performance Target Specifications**



| Application                       | Frequency:<br>Network / Air Interface | Time                                                     |
|-----------------------------------|---------------------------------------|----------------------------------------------------------|
| UMTS / LTE FDD Small Cell         | NA / 100 – 250 ppb                    | Not required                                             |
| GSM / UMTS / W-CDMA               |                                       | Not required                                             |
| CDMA2000                          |                                       | ± 3 to 10 μs                                             |
| TD-SCDMA                          |                                       | ± 1.25 μs (sync interface)<br>±1.5 μs (air interface)    |
| LTE - FDD                         |                                       | Not required                                             |
| LTE – TDD                         | 16 ppb / 50 ppb                       | ± 1.5 μs (≤3 km cell radius)<br>±5 μs (>3km cell radius) |
| LTE – CSFB to CDMA2000            |                                       | ± 10 μs                                                  |
| LTE-A MBSFN                       |                                       | ± 1 μs inter-cell phase difference*                      |
| LTE-A Hetnet Coordination (eICIC) |                                       | ± 5 μs inter-cell phase difference*                      |
| LTE-A CoMP (Network MIMO)         |                                       | ± 0.5 μs inter-cell phase difference*                    |
| Handset Location to 100m (E911)   |                                       | ± 100 ns                                                 |

Confidential © Copyright 2013

\* Vendor specific figures, no 3GPP specification

#### **Contributions to UTC**

Oh UTC

JAN 27

56319

31.9

28.3

23.5

18.2

14.1

10.0

6.7

0.3



CIRCULAR T 302 ISSN 1143-1393

2013 MARCH 08, 10h UTC

Date 2013

MJD

#### BUREAU INTERNATIONAL DES POIDS ET MESURES

FEB 11

56334

FEB 16

56339

FEB 21

56344

FEB 26

56349

ORGANISATION INTERGOUVERNEMENTALE DE LA CONVENTION DU METRE

FEB 1

56324

PAVILLON DE BRETEUIL F-92312 SEVRES CEDEX TEL. +33 1 45 07 70 70 FAX. +33 1 45 34 20 21 tai@bipm.org Uncertainty

up to 20ns

Notes

u

Uncertainty/no

uB

1 - Coordinated Universal Time UTC and its local realizations UTC(k). Computed values of [UTC-UTC(k)] and uncertainties valid for the period of this Circular. From 2012 July 1, 0h UTC, TAI-UTC = 35 s.

FEB 6

56329

Laboratory k [UTC-UTC(k)]/ns AOS (Borowiec) -8.0 -8.7 -9.7 -10.7-10.4-10.6 -10.90.3 5.2 5.3 APL (Laurel) 3.2 3.5 3.3 -0.8 -2.0 -2.9-2.5 0.3 5.2 5.3 413.5 409.1 406.1 5.2 (Sydney) 415.6 416.1 414.0 403.9 -39.5 -44.8 -59.5 -71.3-58.4 -48.5 -48.3 0.3 3.4 3.4 (Wien) BIM (Sofiya) 1890.8 1905.3 1924.2 1937.9 88.5 95.3 91.4 1.5 7.2 7.3 (1) BIRM (Beijing) 206.5 210.8 213.5 222.5 220.3 214.7 216.8 1.5 20.1 20.1 -38.4-34.2-34.4-32.3-27.8 -28.2 -27.5 7.2 (Minsk) (Cagliari) (Bern-Wabern) 5.2 0.0 -5.5 -3.6 3.7 7.1 13.6 0.3 1.9 1.9 CNM (Queretaro) -19.1 -17.0-10.7-14.1-12.7-12.9-10.2 CNMP (Panama) -24.6 -11.7-19.6 5.2 -13.6 -15.0-25.0-34.63.5 6.2 DLR (Oberpfaffenhofen) 39.6 39.9 35.9 25.9 16.2 1.2 1.3 0.7 5.2 DMDM (Belgrade) 7.7 9.7 20.1 15.9 -6.1 -8.2 -9.1 0.3 7.1 7.2 0.3 10.1 10.1 DTAG (Frankfurt/M) 303.9 291.6 292.6 295.6 286.6 276.2 266.5 EIM (Thessaloniki) -47.2 ESTC (Noordwijk) 5.3 3.0 -0.1-0.5 0.1 -2.1 20.1 20.1 (2) 0.7 902.5 HKO (Hong Kong) 881.2 920.9 932.0 952.1 963.6 977.8 2.5 5.2 5.8 IFAG (Wettzell) -615.6 0.3 5.2 5.2 591.9 11377.5 IGNA (Buenos Aires) 11002.6 11069.3 11138.0 11194.4 11255.7 11311.9 5.2 INPL (Jerusalem) -181.4-224.90.7 19.9 19.9 INTI (Buenos Aires) 43.9 22.1 22.1 2.7 -12.4-16.3-5.6 4.0 20.1 20.5 -9.4 0.3 20.1 20.1 INXE (Rio de Janeiro) -24.7-17.2-14.8-14.0-6.2 -3.6 IPQ (Caparica) (Torino) -11.1 -10.6 -10.1-9.3 -7.6 -6.6 -5.3 0.3 2.0 0.5 5.1 JATC (Lintong) -5.4 -4.3 -4.9 -5.6 -4.3 -2.5 -2.75.1 (Kjeller) 338.4 377.6 374.3 391.5 389.4 394.5 373.5 5.0 20.0 20.6 KEBS (Nairobi) 378.0 471.1 577.0 687.1 781.4 893.0 989.5 1.5 20.1 20.1 KIM (Serpong-Tangerang) 301.1

Confidentia KRIS (Daejeon)

Offset

up to

11µs

5

## How long can you hold a microsecond?



- PRS (Primary Reference Source)
  - Frequency accuracy =  $1 \times 10^{-11}$  (G.811 specification)
  - Holds 1μs for 100,000s (~28 hours)
- Cesium clock
  - Typical frequency accuracy =  $5 \times 10^{-13}$
  - Holds 1μs for 2,000,000s (~23 days)
- Rubidium clock
  - Drift under temperature cycling ~1.5μs in 24 hours
- Good quality OCXO
  - Drift under temperature cycling ~8μs in 24 hours

# Do not squander time!







# **Satellite Time Distribution**



# **Satellite Time Distribution (GNSS)**



- Time distributed by radio from satellite
- Typical accuracy: < 100ns</li>
- Advantages:
  - Global availability
    (provided there is a clear view of the sky)
  - Accuracy
  - System reliability
- Disadvantages:
  - Clear view of sky may not be available
  - Vulnerability to interference from ground based transmissions
  - Antenna issues wind, rain, snow, ice, corrosion, bullets!
  - Political issues



# **Long Term GPS Performance**





# **In-Building Reception**



- Signal strength at earth surface around -130dBm
- Buildings may attenuate this by over 40dB



### **Urban Canyons**



- May not be able to view sufficient satellites all of the time
  - Intermittent fixes
- Multi-path reflections distort range measurements
  - Path length change of 30m = time change of 100ns





# **Interference and Jamming**



- Doesn't take much to jam a -130dBm signal!
  - Personal jammers
  - Legal terrestrial transmissions,e.g. Light Squared (now closed down)
  - Political jamming, e.g. North Korea









# **Network Timing Distribution**



# **G.8265** Architecture: Expanded view





# **G.8275.1 Profile: Full Timing Support**



**Boundary Clock** 



(e.g. Basestations)

(packet time and frequency distribution)

# **G.8275.1 Profile: Universal Boundary Clocks**



- Boundary clocks very simple
  - Rely on SyncE for stability
  - BC just a simple protocol add-on to the switch/router function
  - Transparent Clocks (TCs) not considered in this version
- No upgrade path from G.8265 frequency architecture
  - Protection and master selection based on BMCA, not G.781
    - G.8265.1 slaves not compatible
- Requires upgrade of entire transmission path
  - Typically deployed in green-field sites, or where no packet-based frequency sync has been deployed
- Doesn't solve the time offset caused by link asymmetry
  - Fibers are manually calibrated in existing deployments

# **G.8275.2** Profile: Partial Timing Support





# **G.8275.2** Profile: Segmented Architecture



- Strategically-placed BCs break timing path into segments
  - Simple network upgrade from Frequency Profile
  - Re-uses existing PTP GMs and Slaves
- Doesn't require intermediate on-path timing support
  - Allows operation over existing deployed networks
- Requires intelligent boundary and slave clocks
  - Intelligent algorithms filter out the packet delay variation
  - Clocks combine sync from any available source
    - PTP, SyncE, SDH, GPS etc.
  - BCs can be implemented as a standalone box



# **Combining the two**



# **Distributed GPS with PTP backup**





# Move GPS as close as possible to cells





### **Improving GNSS Detection and Acquisition**



- Assisted GPS (AGPS) uses information from the network to assist in demodulating the GPS signal
  - Ephemeris data describes where each satellite is at any given time
- Time fix from PTP (to within a ms)
  - Allows GPS signal to be acquired at lower signal to noise ratio
- Position fix (e.g. from local survey)
  - Base stations typically don't move!
  - Known position also allows the signal to be acquired at a lower SNR
- Coherent Integration
  - Stable frequency allows GPS signal to be integrated for longer, improving acquisition
  - SyncE allows integration times of ≈5s, similar to a good TCXO
  - OCXO or Rb oscillator will allow longer integration times

# Maintaining time between GNSS fixes



- In urban canyons or in buildings, fixes may be several minutes apart
- Local interference or jamming may temporarily interrupt GNSS service
- Timebase maintained using stable frequency
  - OCXO will maintain 1μs for around 60s (variable temp)
  - SyncE will maintain 1µs phase for around 2000s
  - Rb oscillator will maintain 1μs for nearly 24 hours (variable temp)
- Timebase maintained using PTP
  - PTP will maintain phase indefinitely
  - GNSS time fix can be used to calibrate the asymmetry
  - Measures asymmetry on a "whole of network" basis

# **Hybrid PTP/GPS/SyncE solution**





# **Hybrid PTP/SyncE/GNSS Solution**



#### Advantages

- Initial PTP time fix allows acquisition of GNSS signal at lower power
- SyncE or oscillator stability allows longer coherent integration
- Accurate GPS time allows calibration of overall PTP asymmetry
- PTP provides backup in event of GNSS failure

#### Disadvantages

Requires installation of multiple infrastructures



# **Conclusions**



#### **Conclusions**



- Several commercial applications require time accuracy well below 1µs
- No single technique is a complete solution to this:
  - GNSS
  - PTP
  - SyncE
  - Advanced oscillators
    - modern temperature compensation techniques
    - miniature atomics (Rb and Cs)
- Hybrid techniques addresses the deficiencies of each
  - Creates an accurate, robust solution for precise time distribution
  - At least two are required for a reliable solution (GNSS + 1 other)

### **Thank You**

#### **Tim Frost**

CTO Office

tfrost@symmetricom.com

Phone: +44 7825 706952

