Leveraging Synchronized Clocks in
Cyber-Physical Systems

Edward A. Lee

Robert S. Pepper Distinguished Professor
UC Berkeley

“agd ben

Invited Keynote Talk
WSTS 2014,
Workshop on Synchronization in Telecommunications Systems

Swriw

-, 8

2.1‘:.?0

June 11, 2014.
San Jose, CA, USA

Clock synchronization advances have
happened before.

A N
coerpERrTeRRey
| September | :
iP=al

il ﬂ»—xl’v;‘-_ﬂ.—ij‘ !-"-u\. 4

Gregorian Calendar'(B.B—_C history) usé d'Orsa clock (Wiimedia Commons) 2005: first IEEE 1558 plugfest
1500s 1800s 2000s
days seconds microseconds

Lee, Berkeley 2

Clock Synchronization Enables:

o Energy efficiency

o Coordination, even without communication
o Security

o Resource management

o Determinism

In this talk, | will focus on leveraging
clock synchronization to provide
deterministic models for cyber-
physical systems.

Lee, Berkeley

A Cyber-Physical System
Printing Press

Hundreds of microcontrollers and an
= Ethernet network are orchestrated
#~ with precisions on the order of

+ 4 microseconds.

Software for such systems can be
developed in a completely new way.

Bosch-Rexroth

Clock synchronization enables tightly coordinated actions and reliable
networking with bounded latency, despite using TCP/IP.

Cyber-Physical Systems

Orchestrating networked computational
resources and physical systems.

Image: Wikimedia Commons

Roots:

« Coined around 2006 by Helen
Gill at the National Science
Foundation in the US

« Cyberspace: attributed William
Gibson, who used the term in the
novel Neuromancer.

« Cybernetics: coined by Norbert
Wiener in 1948, to mean the
conjunction of control and
communication.

Lee, Berkeley

Schematic of a

simple CPS:

Computational
Platform

Network
Fabric

Computational
Platform

Physical

plant

Lee, Berkeley

Sources of Nondeterminism

Packet losses

Unnkowable execution times

Unnkowable delays

y

Computationall IlNetwork

Platform

Fabric

/A

Physical noise

Physical
plant

A

Parts failures

Lee, Berkeley

Computational
Platform

A

Imperfect actuation

In the face of such nondeterminism, does
it make sense to talk about deterministic
models for cyber-physical systems?

Lee, Berkeley

Models vs. Reality

Solomon Golomb: Mathematical models — Uses and limitations.
Aeronautical Journal 1968

You will never strike oil by
drilling through the map!

Solomon Wolf Golomb (1932) mathematician
and engineer and a professor of electrical
engineering at the University of Southern
California. Best known to the general public and
fans of mathematical games as the inventor of
polyominoes, the inspiration for the computer
game Tetris. He has specialized in problems

of combinatorial analysis, number theory,
coding theory and communications.

Lee, Berkeley

Lee, Berkeley

But this does not, in any way,
diminish the value of a map!

10

The Kopetz Principle

Prof. Dr. Hermann Kopetz

Lee, Berkeley

Many (predictive) properties that we assert
about systems (determinism, timeliness,
reliability, safety) are in fact not properties of
an implemented system, but rather properties
of a model of the system.

We can make definitive statements about
models, from which we can infer properties of
system realizations. The validity of this
inference depends on model fidelity, which is
always approximate.

(paraphrased) 11

Deterministic Models of Nondeterministic Systems

Physical System Model
—
.

-

bg[)"

CarryCut

Image: Wikimedia Commons

Synchronous digital logic

Lee, Berkeley

Deterministic Models of Nondeterministic Systems

Physical System Model

/** Reset the output receivers, which are the inside receivers of
* the output ports of the container.
* exception IllegalActionException If getting the receivers fails.
*/
private void _resetOutputReceivers() throws IllegalActionException {
List<IOPort> outputs = ((Actor) getContainer()).outputPortList();
for (I0Port output : outputs) {
if (_debugging) {
_debug("Resetting inside receivers of output port:
+ output.getName());

"

Receiver[]J[] receivers = output.getInsideReceivers();
if (receivers != null) {
for (int 1 = @; i < receivers.length; i+4+) {
if (receivers[i] != null) {
for (int j = @; j < receivers[i].length; j++) {
if (receivers[i][j] instanceof FSMReceiver) {
receivers[i][j].reset();

}

Image: Wikimedia Commons

Single-threaded imperative programs

Lee, Berkeley

Deterministic Models of Nondeterministic Systems

Physical System Model

> ¢
PN 1
Image: Wikimedia Commons X(t) — X(O) ‘I‘ M /F(T)dT
0

Differential Equations

Lee, Berkeley

A Major Problem for CPS:
Combinations of these models are Nondeterministic

/** Reset the output receivers, which are the inside receivers of
* the output ports of the container.
* @exception IllegalActionException If getting the receivers fails.
*/
private void _resetOutputReceivers() throws IllegalActionException {
List<IOPort> outputs = ((Actor) getContainer()).outputPortList();
for (I0Port output : outputs) {
if (_debugging) {
_debug("Resetting inside receivers of output port:
+ output.getName());

"

Receiver[]J[] receivers = output.getInsideReceivers();

if (receivers != null) {
for (int 1 = @; 1 < receivers.length; i++) {
if (receivers[i] != null) {

for (int j = @; j < receivers[i].length; j++) {
if (receivers[i][j] instanceof FSMReceiver) {
receivers[i][j].reset();

}

Signal Signal

——— ;
: . |
Image: Wikimedia Commons X(t) — X(O) + M / F(T)dt
0

Lee, Berkeley 15

1 void initTimer(void) { \
2 SysTickPeriodSet (SysCtlClockGet () / 1000) ;|
3 SysTickEnable (); \
I h e M Od eI . SysTickIntEnable (); \
s) \
¢ volatile uint timer_count 0; \
1 void ISR(void) { \
8 if (timer_count != 0) { \
9 timer_count--; \
10 } i
w3 \
12 int main(void) { \
13 SysTickIntRegister (&ISR); '
14 .. // other init “
N 15 timer_count = 2000; \
@ @ 16 initTimer O); \
1w while(timer_count != 0) { \\
18 code to run for 2 seconds \
AN | 19 ¥ \
\ 1 20 . // other code |
1
1
- 1
COIIIpUt&tIOI’I&' Network |

Computational
Fabric Platform

Physical
plant

t L
x(r) = x(0) + % | / F(t)dtq
0

Lee, Berkeley

Image: Wikimedia Commons

16

The Reality

/— JTAG and SWD interface

\
—— USB interface
switches
connected

to GPIO pins

L speaker

—— connected to
sl GPIO or PWM
R Gl ARt < GPIO connectors
it : S < PWM outputs
removable R4S R
flash —)
memory
slot
Computational

Network
Fabric

Computational
~ Platform

Physical
plant

Lee, Berkeley

17

The Model is not
much more
deterministic than
the reality

¢ volatile uint timer_count = O0;

Platform

Computational

NenNork;

Fabric

\
SysTickPeriodSet (SysCtlClockGet O / 1000) ;]|
SysTickEnable () ;
SysTickIntEnable O

timer_count--;

// other d

Physical
plant

O\N

F(t)dt

Lee, Berkeley

Computational
Platform

The modeling
languages have
disjoint, incompatible
semantics

Image: Wikimedia Commons

18

System dynamics
emerges from the o T
physical E
realization oy I
Computational Network | Computational
Platform Fabric Platform

Physical
plant
7
' ... leading to a

“prototype and test”
style of design

)

Lee, Berkeley ik / / ,,/fhvage.' Wikimedia Commons 19

Our Proposal: Discrete-Event Semantics +
Synchronized Clocks

DE models have been widely used simulation, hardware

‘ AUVANCES IN CAD F0R VLSI, Volume 7

design, and network modelin

NETWORK SIMULATION Introduction to
EXPERIMENTS MANUAL Discrete Event

1 ﬁ Systems
Second Edition
\ @ AT
Computer A @ Gns3 Network Simulation Guide

Networks » e

' I‘ l (I “6 Thomas & .‘DOlb' s mscnlplluu
(h G.C ndra ¢ I

DISCRETE-EVENT

Systems ' T
SYSTEM SIMULATION The Verilog

Christos G, Cassantras
Stéphane Lafortune

Hardware P
Description
Language

k1ng

ond Editiol

Network Simulator
Mapping Guide

&~ | Networ

Jeffrey S. Beasley

Notwork Simulator

20

Using Discrete Event Semantics in
Distributed Real-Time Systems

o DE is usually used for simulation (HDLs, network simulators, ...)
o Distributing DE is done to accelerate simulation.

o We are using DE for distributed real-time software, binding time
stamps to real time only where necessary.

o PTIDES: Programming Temporally Integrated Distributed
Embedded Systems

Y. Zhao, E.A. Lee, J. Liu, “A Programming Model for Time-Synchronized Distributed
Real-Time Systems,” Proc. Real-Time and Embedded Technology and Applications
Symposium (RTAS), IEEE, 2007, pp. 259 - 268.

Ptides: First step:
Time stamps bind to real time at sensors and actuators

Actors wrap

sensors . .
Time stamp value is
rm1 | time of measurement Time stamp value is a
| deadline
Computationl *
Platform 3
I Computation3 E_—
Actors wrap
actuators

Platform 2 /
“.‘922* Sensc{rz H Computation2 * Mer %/

Al I Aot
g P

hysical Local '
i?wtg rface network| Event i?l:lg rsflz:cazlé
i Source
fabric : ——v—
@-* Computation4 *—

Physical
plant

v

Avd

Ptides: Second step:

Time-stamped messages.

Actors specify
computation

\§
\

Messages carry time
stamps that define their

Platform 1 interleaving
Computationl *
Platform 3
/ Computation3 E_—
Platform 2 I
< Sensdr2 H Computation2 * N
b4
hysical Local _
i'?uey rface network| Event p hysical
fabric Source interface
o Y
Computation4
Physical
plant

Ptides: Third step:

Network clock synchronization

GPS, NTP, IEEE 1588,
time-triggered busses, ...
they all work. We just
need to bound the clock
synchronization error.

Platform 1
Computationl
¥

A |

Platform 3

|

Platform 2 [

“-iﬂﬂ* Sensc!rZ H Comp/ /i0”2 *
Al /|

|

I Computation3 E_—

¥

physical

.

interface netw:

Actuatorl

physical
interface

Computation4 *— —

Messages are

Assume bounded [\
clock error e nt

Clock synchronization | | processed in time-
gives global meaning to stamp order

time stamps

Ptides: Fourth step:
Specify latencies in the model

Global latencies between sensors and actuators become
controllable, which enables analysis of system dynamics.

Model includes

Actuatorl

manipulations of time
stamps, which control

1 latencies between

sensors and actors

X
physi
interf.

Actuators may be

Platform 1
Computationl * el tima
ensorA Platform 3
- » del ti
/ IComputatlonB)
Platform 2 l
2932* Senser H Computation2 *
* 1 model time
| delay d3
ph\Zical Local
interface network Event
fabric Source
Db
Computation4
Db
Physical
nlant

designed to interpret
input time stamps as

Feedback through the physical world |

the time at which to

take action.

Ptides: Fifth step
Safe-to-process analysis (ensures determinacy)

Safe-to-process analysis guarantees that events are processed in time-stamp
order, given some assumptions.

Assume bounded
sensor delay s

Technical:
Need to have
deadlines on
network
interfaces, to
guarantee
time-stamp
order
irrespective
of execution
times of
actors.

/

Assume bounded
network delay d

Platform 3

\i
m
[

Computation3 §

_—

model time
delay d1

r— gl

//

Platform 2 l

v |

phygica
interfac

Assume bounded
clock error e

W&f
A

tation2

fodel time

delay d3

Local

Cor\gutation4 J

model time
k lay d2

Merge

Application
specification of
latency d2

An earliest event with
time stamp t here can
—* be safely merged when
real time exceeds
t+s+d+e—-d2?

So Many Assumptions?
Recall Solomon Wolf Golomb:

You will never strike oil by
drilling through the map!

All of the assumptions are achievable with today’s
technology, and in fact are requirements anyway

for hard-real-time systems. The Ptides model
makes the assumptions explicit.

Violations of the assumptions are detectable as
out-of-order events and can be treated as faults.

Lee, Berkeley 27

Handling Faults

A “fault” is a violation of assumptions in the model.

Platform 3

P~ | odel time
Computation3 § Stamp o

model time arrives here with

Platform 1
As with any | SerSOT1H—S
model, the A
physical /
world may Platform 2
not conform a2y Se nsdr2 —3f Computation2 B
to its rules. A .
Violations -
should be e
treated as
faults.

’
2

Local
Event
Sa

model time
delay d3

If an event

an earlier time

.. after an event here
with a later time

.-.. stamp has been
#B | processed, then one
or more assumptions
was violated.

Merge

Ptides Schedulability Analysis

Determine whether deadlines can be met

The problem turns out to be decidable for a large class of models.

Input Automata
one per sensor

§ Scheduler Automaton

Task Automata one per platform
one per actor in the model

On the Schedulability of Real-Time Discrete-Event

Systems-:
Eleftherios Matsikoudis Christos Stergiou - Edward A. Lee

EMSOFT 2013

Google Spanner

Google
independently
developed a
very similar
technique and
applied it to
distributed
databases.

Lee, Berkeley

Spanner: Google’s Globally-Distributed Database

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, JJ Furman,
Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh,
Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura,
David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, Dale Woodford

Google, Inc.

Abstract

Spanner is Google’s scalable, multi-version, globally-
distributed, and synchronously-replicated database. It is
the first system to distribute data at global scale and sup-
port externally-consistent distributed transactions. This
paper describes how Spanner is structured, its feature set,
the rationale underlying various design decisions, and a
novel time API that exposes clock uncertainty. This API
and its implementation are critical to supporting exter-
nal consistency and a variety of powerful features: non-
blocking reads in the past, lock-free read-only transac-
tions, and atomic schema changes, across all of Spanner.

tency over higher availability, as long as they can survive
1 or 2 datacenter failures.

Spanner’s main focus is managing cross-datacenter
replicated data, but we have also spent a great deal of
time in designing and implementing important database
features on top of our distributed-systems infrastructure.
Even though many projects happily use Bigtable [9], we
have also consistently received complaints from users
that Bigtable can be difficult to use for some kinds of ap-
plications: those that have complex, evolving schemas,
or those that want strong consistency in the presence of
wide-area replication. (Similar claims have been made
by_other_authors [37].) Many_applications_at_Google

Proceedings of OSDI 2012

30

Google Spanner

Record update comes
in. Time stamp t,.

ON Qc

North Pacific
Ocean

Query for the same record
comes in. Time stamp t,.

Distributed database with redundant
storage and query handling across data
centers.

Lee, Ble 31

Google Spanner

Record update comes
in. Time stamp t,.

ON Qc

North Pacific
Ocean

 Gutot | Query forthe same record
México Mexico comes in. Time stamp t,.

Ift, <t, the query response should be
the pre-update value. Otherwise, it
should be the post-update value.

Lee, Ble 32

Google Spanner: When to Respond?

Record update comes

in. Time stamp t, Synchronize clocks

with error bound e.

Communication
latency bound b.

North

Query for the same record
comes in. Time stamp t,.

México

When the local clock time exceeds
t, + e + d, issue the current record
value as a response.

Google Spanner: Fault!

Record update comes

in. Time stamp t, Synchronize clocks

with error bound e.

Communication
latency bound b.

North

Query for the same record
comes in. Time stamp t,.

México

If after sending a response, we receive
a record update with time stamp t, <t,
declare a fault. Spanner handles this
with a transaction schema.

Ptides In
Ptolemy Il

DE Director

Oracle time

PtidesPlatform1

http.//ptolemy.org

Physical
plant

PtidesPlatform2

©

Network

tNetwor ‘

PtidesDirector

Local clock represents

platform time (which drifts
relative to oracle time), but

SensorPort

actors inside see logical time.

Computation TimeDelay

delay of:

Logical time stamp
specifies a deadline
(in platform time) for
production of an output]

ActuatorPort

s

dl

Uses platform time
to assign a logical
time stamp to
input events.

Logical time delay
(only modifies the
logical time stamp).

NetworkTransmitterPort

PtidesDirector Logical time stamp
specifies a deadline
(in platform time) for

production of an output.

Open-source modeling and simulation
environment, with Ptides support created

by Patricia Derler.

Lee, Berkeley

Computation TimeDelay2
NetworkReceiverPort delay of- ActuatorPort
i 42 u

Logical time delay
(only modifies the
time stamp).

Logical time stamp

is received along

with the data from the
remote platform.

35

See Book

See

o Chapter 8:
Discrete-Event Models

o Chapter 10: i;.;‘ s ‘ D~
Modeling Timed Systems USlﬂg PtUlemyu}’% ?

& R e
L P ", ’ S

d
i® Concurrent

\.

. ”

.

Free download at:

http://ptolemy.org/systems AENA
p:p y.org/sy ot z_‘
.'./;" :

A
mr :

& ¢
L 4

]]\ A
' \ Rendezvous

.ﬁ, st g%

a3, 1 , u:'n*Ox\ht
Lee, Berkeley 5 AR e O AP

.

s h e el

Ptides is a Change in Philosophy

The implementation architecture (processors, networks,
software) affects the behavior of any cyber-physical
system.

Conventional approach: Specify functionality,
Implementation architecture, and mapping. Timing
emerges from the combination.

Ptides approach: Specify temporal behavior. Then verify
that it is met by a candidate implementation architecture.

Ptides offers a deterministic
model of computation
for distributed real-time systems.

http://chess.eecs.berkeley.edu/ptides

Conclusion

Today, timing behavior in programs and networks emerges
from the physical realization.

Tomorrow, timing behavior will be part of the programming
abstractions and the hardware realizations.

Raffaello Sanzio da Urbino — The Athens School Image Wikimedia Commons

‘ .W'Y‘ s
. \Vg
8 ¥ 9 k. ,'
. » A ey ! y J
' o8 ¢ '_ < = - ™ - : - 5 E
7, ¥ : g 4 : < g
- - P’ ' B : -
L - |
3 F 4 -

vy

Acknowledgements

David Broman

Patricia Derler

John Eidson

Isaac Liu

Xiaojun Liu

Slobodan Matic
Eleftherios D. Matsikoudis
Christos Stergiou

Stavros Tripakis

Yang Zhao

Haiyang Zheng

Michael Zimmer

Jia Zou

Plus: The entire Ptolemy Il Pteam

O O O O OO OO OO 0O O O

Lee, Berkeley

40

