The Care And Feeding

Of a Network Timing and Synchronization Lab

WSTS San Jose March 2015

Presentation

• Presenter

Steve Jackson

Ixia, Morrisville, North Carolina, US

• With Expert Contributions By

Malcolm Green

Semtech, Romsey, Hampshire, UK

Audience

This presentation is aimed at three audiences:

- 1. Newcomers to the overall arena of LAN based sync technology testing
- 2. Persons who are building new test lab facilities
- 3. Organizations wishing to improve their existing lab

Goals

 To objectively share best practices encountered during three years of visiting multiple LAN sync labs on three continents

• To have a majority of reviewers comment "gee, I never thought of that before" at least once

Timing Lab Standard Signals

- 10 MHz
 - A distribution amplifier is often needed
- 1 PPS
 - A typical RG-58 type coaxial cable has capacitance of approximately 28 picofarads (pF) per foot. Therefore, even a relatively short cable of this type can adversely affect the integrity of the 1PPS signal rise-time
 - Take special care to avoid reflections (no Ts, poor terminations & connectors)
- Time-Of-Day
 - Several data formats ... NMEA-0183, CMCC, ISO 8601, Cisco
 - Interface often EIA-422 or -485, sometimes EIA-232
- GPS
 - L1 signal; 1575.42 MHz

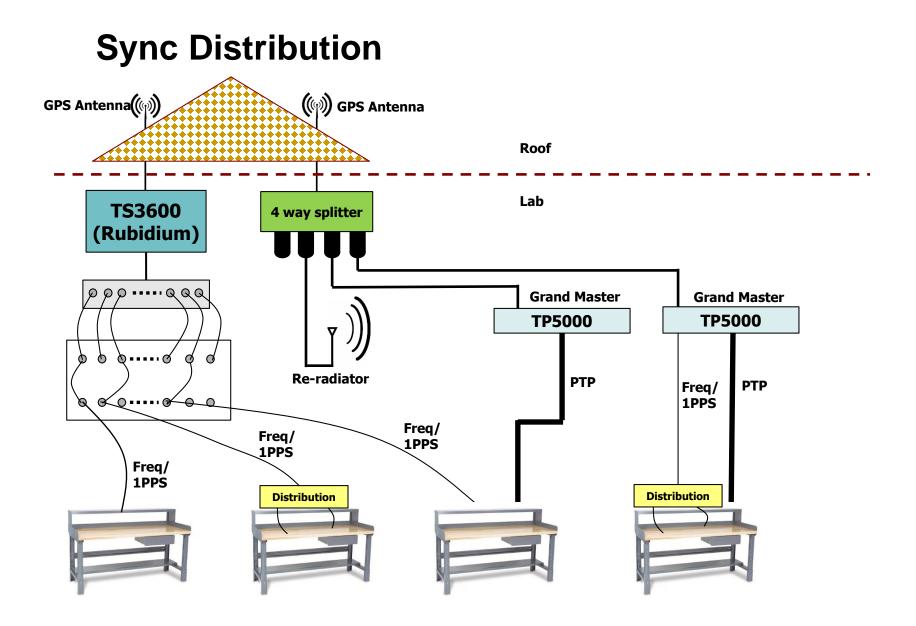
From the Roof, and Down

- GPS antenna
 - Antenna usually contains a DC powered preamplifier
- Cable
 - Ideally suited for low loss at 1.5 GHz; cable to be of known length
- GPS Distribution amplifier
 - Provides DC power to the antenna and multiple outputs for receivers
- More cable
 - Connects GPS receivers to distribution amplifier
 - To be *of known length*

Cable "Of Known Length"

- A major theme of this presentation
- A frequent cause of heartburn in labs missing this key knowledge
- Has caused more testing "do overs" than any other single issue

Your Cables Are Not Free Space


1,079,252,849 km/b 670,616,629 mpb

THE SPEED OF LIGHT

Sharing The Goodness

- GPS distribution amplifier
- Application shown in next slide
- This is a 'cable' also ... it's equivalent to about 8 meters of added cable length, each port.

GPS: Notes, Challenges and Good Practice

- Each GPS feed has a length of low loss coaxial cable, the electrical length of which must be accounted for
- Using modern, sensitive GPS receivers in the lab may give multiple paths, via the re-radiator or the cable. *This must be monitored*.
- Often, a purpose built multicoupler is used for signal sharing
- GPS technology locates (and determines time) at the *antenna*, not at your receiver

Quiz: What is the problem in the picture on the previous slide?

GPS: Notes, Challenges and Good Practice

 Antennas offer the simultaneous challenges of needing to be powered, of being a known electrical distance from the receiver, and to keep any roof penetrations sealed against water incursion

[Antenna/cable show-and-tell]

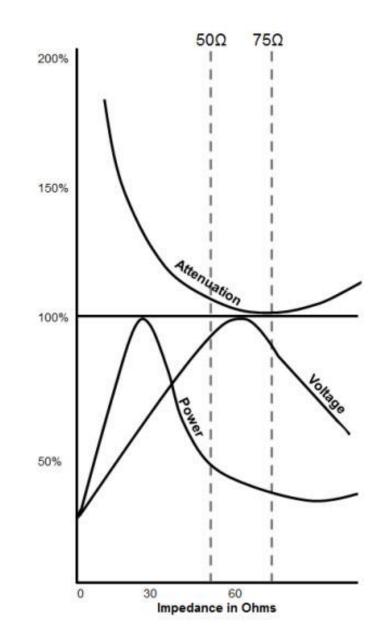
Cabling: Velocity is the Factor

	50MHz Att/P	144MHz Att/P	432MHz Att/P	1296MHz Att/P	D	VF
Aircom+		4.5 / 1000	8.2 / 530	14.5 / 300	10.8	0.85
Aircell 7	4.8 / 1000	7.9 / 800	14.1 / -	26.1 / 190	7.3	0.83
Ecoflex 10		4.8 / 950	8.9 / -	16.5 / -	10.2	0.86
Ecoflex 15	1.96 / -	3.4 / 1800	6.1 / -	11.4 / -	14.6	0.96
H 100	2.8 / -	4.9 / 1000	8.8 / 530	16.0 / 130	9.8	0.84
H 155	6.5 / -	11.2 / 240	19.8 / 90	34.9 / 49	5.4	0.79
H 500	2.9 / -	- / 1000	- / 530	17.4 / 130	9.8	0.81
H 2000 flex	2.7 / -	4.8 / 1600	8.5 / -	15.7 / -	10.3	0.83
RG 55		18.5 / 300	34.0 / 200	60.0 / 100	5.4	0.66
RG 58 CU	11.0 / -	20.0 / 240	40.0 / 90	90.0 / 49	5.0	0.66
RG 174 U		34.0 / 95	60.0 / -	110.0 / 30	2.8	0.66
RG 213 U	4.3 / -	8.2 / 800	15.0 / 290	26.0 / -	16.3	0.66
RG 223 U		18.5 / 300	34.0 / 200	60.0 / 100	5.4	0.66
Cellflex 1/4"		5.5 / 1200	9.0 / 750	18.0 / 400	8.0	0.85
Cellflex 3/8"		3.8 / 2800	6.5 / 1200	13.0 / 680	15.0	0.85
Cellflex 1/2"		3.0 / 2800	5.6 / 1600	10.0 / 850	16.0	0.88
Cellflex 5/8"		2.5 / 4000	4.0 / 2300	7.2 / 1350	23.0	0.85

Velocity is the *Factor*?

Cable dielectric	Velocity factor (VF)		
Solid polyethylene (PE)	0.659		
Foam polyethylene	0.80		
Air-space polyethylene	0.88		
Foam polystyrene (PS)	0.91		
Solid polytetrafluorethylene (PTFE)	0.695		
Solid Teflon	0.69		
Air-space Teflon	0.90		
	in a second		

Velocity is the Factor!


- For highest accuracy, the velocity factor of any given cable is measured on a per-spool basis
- This parameter is expected to not vary substantially on the cable in a given spool
- Cut a precisely measured physical length of cable, say 30 meters, and use a time domain reflectometer to measure the electrical length, then determine the Vp for the cable

Roll Your Own

- Cut and terminate your own cables
 - Velocity factor of preassembled cables is not guaranteed
 - Repeatable tests = all user port signals have identical and deterministic delays
 - Costs are lower (can be MUCH lower)
 - If a cable goes bad: just make a new one, quickly! No FEL. (FedEx Latency)
- Labels On Your Cables
 - More than just a catchy rhyme, it can save hours of tech time
 - One good alternative encountered: *make and use only standard lengths*
 - Always indicate electrical lengths of cables in lab test documentation

50 or 75?

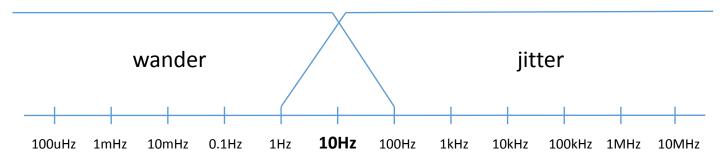
50 or 75?

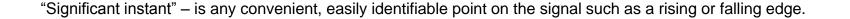
- 30 ohm cable has highest *power handling* per unit length
 - But it's very hard to find! I am almost 54, and have never seen any.
- 75 ohm cable has the lowest *loss* per unit length
 - 52 ohms is simply a compromise value between these
- 75 ohm cable is usually less expensive than 50 ohm cable
- Also can be easier / cheaper to connectorize
- Timing labs generally don't have high power requirements
- So ...

Rooftop Alternatives

- What if you can't have a rooftop GPS antenna?
- Or, you *can* have one, but its performance is compromised?

- In the event of problems with GPS reception, a suitable lab multisignal source may be put into Rubidium-backed holdover, providing:
 - T1, E1, 2.048 MHz, and 10 MHz inputs and outputs
 - 1 PPS and TOD output ports


Measurement Test Equipment


- Many vendors
- Differing packaging, benefits, features, and performance parameters
- Generally used to test conformance with ITU-T recommendations
- Also used for lab development (improvement in product performance, troubleshooting) and clock quality monitoring in live networks
- Convenient to consider capabilities in four test 'arenas'
 - 1. Physical layer clock, so-called 'synchronous Ethernet'
 - 2. Packet layer clock, IEEE 1588 Precision Time Protocol or PTP
 - 3. Testers that can measure both clocks simultaneously
 - 4. Other network clocks (circuit emulation, SAToP, etc.)

Jitter, Explained

... not to be confused with Packet Jitter or Packet Delay Variation (PDV)

- Jitter ('timing jitter' or 'physical layer jitter'): The short-term variations of the significant instants of a timing signal from their ideal positions in time (where short-term implies that these variations are of frequency greater than or equal to 10 Hz).
- Wander: The long-term variations of the significant instants of a digital signal from their ideal position in time (where long-term implies that these variations are of frequency less than 10 Hz).

Ethernet PHY Clock

- Synchronous Ethernet
- Recovered clocks
- Frequency error / offset
- Time Interval Error
- Impairment generation (wander and / or jitter)
- ESMC

Ethernet Packet Clock

- Precision Time Protocol
- Packet Delay Variation
- Time Interval Error (and mathematical derivations)
- Phase Error
- Impairment options
- PTP Master and Slave options

