Frequency, Time, and Phase in the 3.5 GHz CBRS Band James Peroulas 2016-06-15 peroulas@google.com

Agenda

New approach to allocating spectrum resources

Frequency, time, and phase are important

Lessons learned...

Agenda

New approach to allocating spectrum resources

Frequency, time, and phase are important

Lessons learned...

Google's Mission Statement

Organize the world's information and make it universally accessible and useful.

Google's Mission Statement

Organize the world's information and make it universally **accessible** and useful.

Traditional Spectrum Licensing

- Spectrum purchasing (perpetual license)
- Covers large swathes of area
- Expensive \$B
- Results:
 - Large barriers to entry
 - Purchase resources based on projected future needs
 - Resources are unused until those needs materialize

Industry Initiative to Improve

Spectrum Access

- President's Council of Advisors on Science and Technology (PCAST) report
- "Realizing the Full Potential of Government-Held Spectrum to Spur Economic Growth"
 - Published in July 2012
 - <u>http://www.whitehouse.</u> gov/sites/default/files/microsites/ostp/pcast_spectrum_report_final_july_20_2012.pdf
- Co-authored by a large group of individuals including Eric Schmidt from Google.
- FCC R&O #1 released April 2015
 - <u>https://apps.fcc.gov/edocs_public/attachmatch/FCC-15-47A1.pdf</u>
- FCC R&O #2 released May 2016
 - <u>https://apps.fcc.gov/edocs_public/attachmatch/FCC-16-55A1.pdf</u>

3.5 GHz Spectrum

- 150 MHz of spectrum from 3.55 GHz to 3.7 GHz
- "Lightly used"
 - US Navy uses it for SPN-43 non-combat, aircraft carrier landing radar
 - 1.6 MHz BW
 - 1 MW RF power conducted
 - 1.6 GW EIRP (enough for time travel!)
 - Satellite industry (Rx Only)
 - Wireless ISP's (WISP)

CBRS Band

- CB radio is back!
- Citizen's Broadband Radio Service (CBRS)
- Shared spectrum
- 3 Tiers of usage rights
 - 1. Incumbents
 - 2. Primary Access License (PAL)
 - 3. General Authorized Access (GAA)

Tier 1: Incumbents

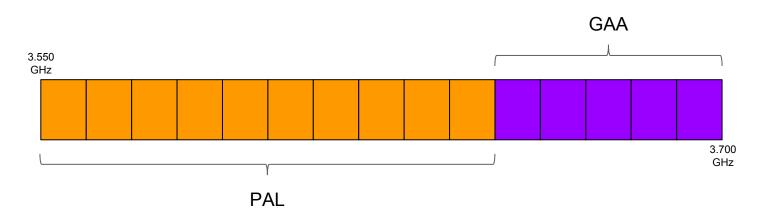
- US Navy
 - Absolute priority over anyone else
 - "We're here. We want this frequency. Get off. <EOM>"
- Fixed Satellite Services (FSS)
 - RX only
- Wireless ISP's
 - Must migrate to CBRS by 2020

Tier 2: PAL

- Groups/ entities that have purchased a CBRS PAL license
- License lasts for 3 years
- Covers a single census tract
- If a PAL license is not being used, it can be used by a GAA device
- Guaranteed clean access to spectrum
 - Must not interfere with incumbents

Census Tracts (Lower Manhattan)

Census Tracts (SF and surrounding)


Tier 3: GAA

- Everybody else
- No guarantees
- Anybody can use spectrum*
 - Must use CBRS certified device
 - Must register and be controlled by SAS
 - Must not interfere with PAL or Incumbent
- No coordination is provided among GAA devices

SAS - Spectrum Access System

- Before transmitting, Citizens Broadband Service Device (CBSD) must contact the SAS
 - This is where I am, this is my antenna pattern, this is my TX power, this is my license class, this is my desired channel. Can I transmit?
 - Only applies to basestations
- Low power terminals are not directly managed by SAS
- High power terminals are allowed but must register as CBSD devices
- SAS uses knowledge of devices to determine if the requesting device will cause interference to higher tier users of spectrum
- No protection or coordination is provided among GAA devices
- SAS is <u>not</u> a realtime scheduler!

CBRS Channels: 15 x 10MHz

- 7 PAL licenses are available in any one census tract
- PAL license region is the left 100 MHz of the CBRS band (10 channels)
- No single entity can own more than 4 PAL licenses
- Environmental Sensing Capability (ESC) devices will be used to detect navy ships and trigger removal of users currently occupying the band

CBRS Device Details

- Category A CBSD's
 - 30 dBm EIRP (1 Watt) / 10 MHz
 - Fixed location, indoor or outdoor
 - Antenna < 6m if outdoor
- Category B CBSD's
 - 47 dBm EIRP (50 Watts) / 10 MHz
 - Fixed location, outdoor only
 - Professional installation required
 - Antenna < 6m
- CBSD's have a vertical positioning accuracy requirement of +/- 3m
- Terminals
 - 23 dBm EIRP (0.2 Watts) / 10 MHz
 - Mobility allowed

Dynamic Spectrum Management

Examples

- Navy ship radar is detected outside of Norfolk, VA on channel #4
 - All devices (PAL or GAA) operating on channel #4 are instructed by the SAS to cease operations
 - Devices are free to contact the SAS for a new channel allocation
- New PAL device wants to start transmitting on channel 2 where GAA devices are currently camped
 - All GAA devices are instructed by SAS to cease operations on channel 2
 - GAA devices are free to contact the SAS for a new channel allocation

Interest outside the US

UK and EU regulators are observing progress in the CBRS band

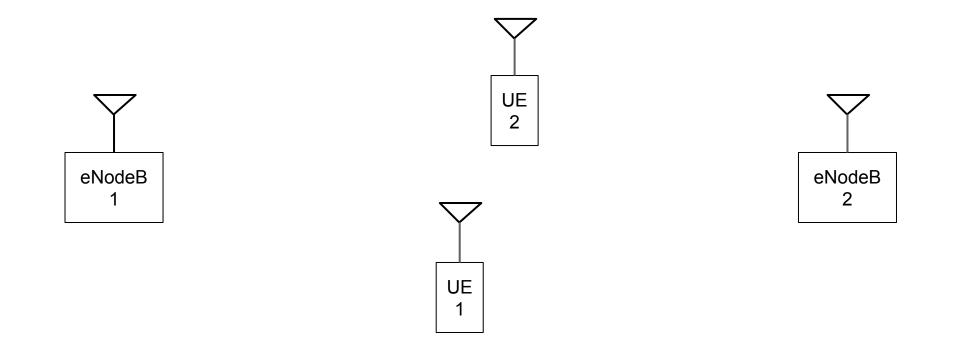
Timing in CBRS

- CBRS is a TDD band
- Great interest in deploying LTE in CBRS band
 - "Small Cells"
- Different than previous LTE-TDD bands
 - Different spectrum emissions mask requirements
 - Localized, **possibly non-planned**, deployments

Opportunity for Timing Community

- How can an untrained individual deploy an LTE basestation with proper timing?
- Distributed timing solutions
- Indoor, outdoor, small cell, enterprise, mom & pop
- Residential femtos problematic
 - eLoran a solution?
- Instead of providing one large timing solution to one large entity, there will be many smaller entities looking for solutions specific to their environment

Agenda



New approach to allocating spectrum resources

Frequency, time, and phase are important

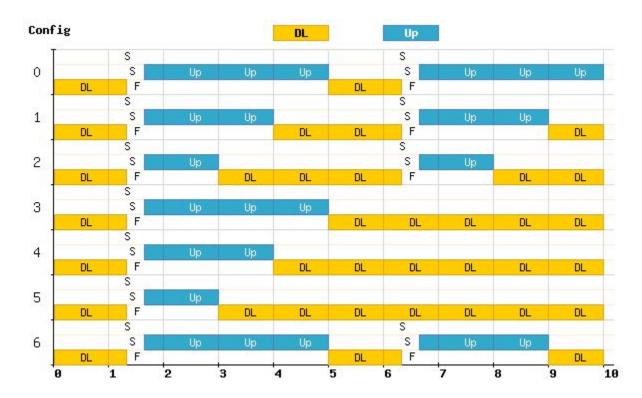
Lessons learned...

LTE TDD Interference - Co channel

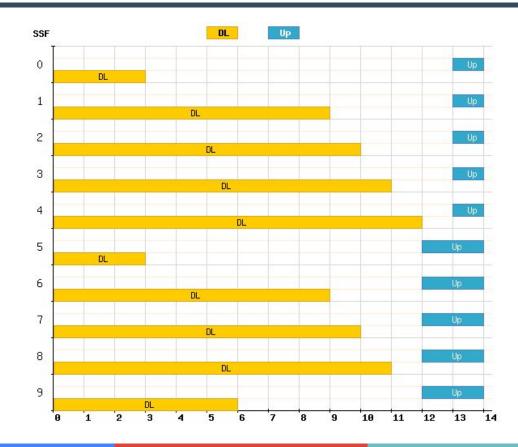
Problems exist when one device is in RX while a nearby device is in TX

Interference Pairings

eNB1 ⇔ UE2 eNB2 ⇔ UE1	Normal interference scenario (poor timing can affect interference rejection algorithms)			
UE1 ⇔ UE2	Significant interference			
eNB1 ⇔ eNB2	Significant interference			

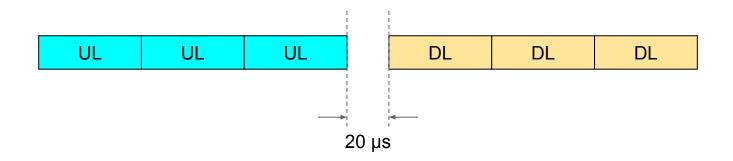

LTE UL/ DL timing

Uplink-downlink	Subframe number									
configuration	0	1	2	3	4	5	6	7	8	9
0	D	S	U	U	U	D	S	U	U	U
1	D	S	U	U	D	D	S	U	U	D
2	D	S	U	D	D	D	S	U	D	D
3	D	S	U	U	U	D	D	D	D	D
4	D	S	U	U	D	D	D	D	D	D
5	D	S	U	D	D	D	D	D	D	D
6	D	S	U	U	U	D	S	U	U	D


....

LTE UL/DL Timing (More detail)

DL to UL switch point @ eNB

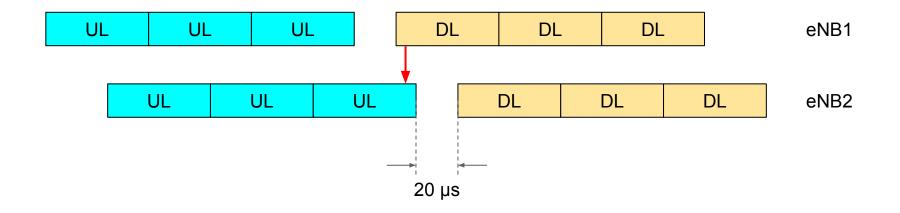

DL to UL switch point (UE \Leftrightarrow UE)

- Beginning of UE1's PRACH transmission should not be earlier than the end of UE2's DL reception.
 - $t_{error} < t_{GP}$ -15 µs $t_{UE,RX->TX}$ $(t_{prop,enb2-UE2}-t_{prop,enb1-UE1})$
- Not a problem unless UE2 is much farther from eNB2 than UE1 is from eNB1.
- Only happens in a network where eNB's have vastly different TX power levels.
- Can always increase guard period.

DL to UL switch point ($eNB \Leftrightarrow eNB$)

- If DL from eNB2 is delayed by too much, it can interfere with reception of PRACH by eNB1
 - $t_{error} < t_{GP} 15 \,\mu\text{s} t_{BS,TX->RX} t_{prop,enb1-enb2}$
- Not a problem unless eNBs are separated by large distances but in that case, signal power is very weak.
- Can always increase guard period.

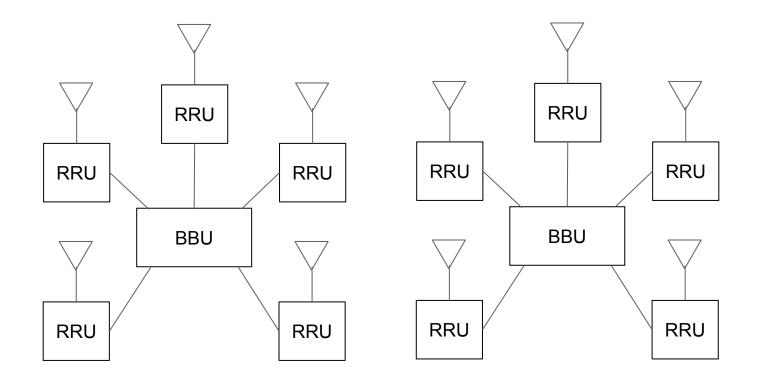
UL to DL switch point @ eNB


UL to DL switch point (UE \Leftrightarrow UE)

- UE1 must stop transmitting before UE2 starts receiving
 - $t_{error} < 20 \ \mu s t_{UE,TX->RX} + t_{prop,enb1-UE1} + t_{prop,enb2-UE2}$
- Theoretically, for UE's very close to their small cell basestations, t_{error} ~= 0
- Depends on t_{UE,TX->RX}

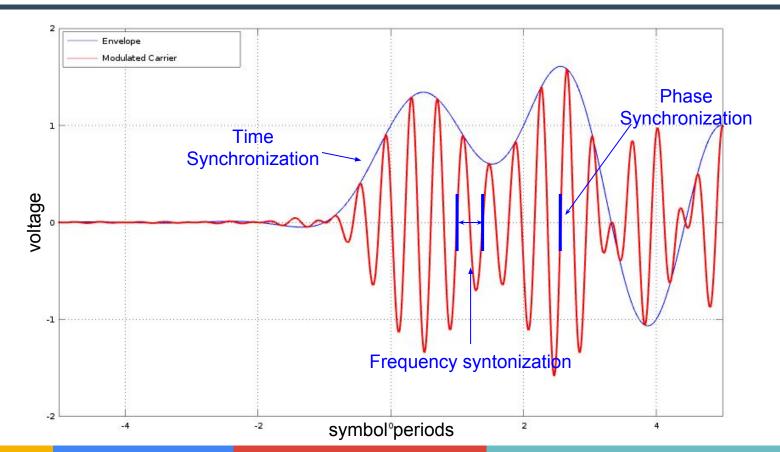
UL to DL switch point (eNB \Leftrightarrow eNB)

- eNB2 should not begin transmitting before eNB1 has finished receiving
 - $t_{error} < 20 \ \mu s t_{BS,TX->RX}$
- Depends on t_{BS,TX->RX}
 - Spec is 17 µs
 - t_{error} < 3 µs


eNB ⇔ eNB interference

Final timing spec

- Final timing spec was chosen, in 2008, to be 3µs
 - 8 years ago
- Timing is not as much an issue for handover in LTE
 - All handovers are hard handovers requiring initial PRACH transmissions
- It is an issue for WCDMA


Modern LTE Deployments

Channel Coherence Time @ 3.5 GHz

UE Speed	Channel Coherence Time
0 kph	Infinite*
3 kph	13 ms
10 kph	4 ms
30 kph	1.3 ms
100 kph	0.4 ms

Frequency, Time, and Phase (FrTiPh)

FrTiPh Stability Requirements

Synchronization Domain	Stability R	Geographical area	
Frequency Syntonization	Short term and long term	ADEV < 50e-9	1 eNB
Time Synchronization	Short term and long term	TDEV < 1.5 µs	Entire Network
Phase Synchronization	Short term	TDEV(4ms)<10ps	CoMP area

What can I do, in LTE, with 1ns

timing at the eNB?

- Better positioning
 - In non-LOS environments, limiting factor is uncertainty of channel delay
- Reduced channel estimation for static UE's
 - If environment is changing, channel estimation still necessary
- Mosquito zapper
 - Concentrate energy from 100 antennas onto a single location

Agenda

New approach to allocating spectrum resources

Frequency, time, and phase are important

Lessons learned...

Thank You to the Timing Community

- The community has been very welcoming of a newbie.
- I've had direct access to some of the top minds in the industry.
- There are many brilliant people involved that have made an amazing science out of the study, generation, and distribution of time.

Real world PTP experiences

- G: "Does your switch do PTP?"
- ABC: "Of course! It says so right on the box!"
- G purchases switch and tries to turn on PTP
- ABC: "Oh yeah, about that PTP thing. We actually haven't written any code for that yet..."

Real world PTP experiences

- XYZ: "Our switch is great! It can do PTP over VLAN's which our competitors cannot!"
- G purchases switch and tries to turn on PTP over VLAN
- "Oh yeah, about that PTP VLAN thing... It only works in certain network environments. Your environment isn't one of them."

Real world experiences

- P298: "We have this great new clock that supports G.8275.1!"
- G: "Great! So you support SyncE?"
- P298: "No"
- G: "Isn't SyncE required for G.8275.1 support?"
- P298: "…"

Real world experiences

- G: "I see that our BC's do not perform any filtering of the incoming time estimates. Why not?"
- ZQWP: "In our target industry, our customers requested that we do not perform filtering."
- G contacts customers in their target industry who state that they never made such a request. They would prefer some sort of a loop filter.

End result

- We regularly spend <u>days</u> (even weeks...) just getting two pieces of equipment to talk to each other.
 - No timing performance measurements made.
- We cobbled together a PTP network.
 - We found a combination of commands/ configurations that make GM A talk to Switch A
 - We found a combination of commands/ configurations that make Switch A talk to Switch B
 - We found a combination of commands/ configurations that make Switch B talk to Small Cell A
 - Repeat for GM B, Switch C, Small Cell B, etc.

Thanks

- I've been fortunate to be able to spend time with several experts in the industry. I appreciate their patience with my questions.
- Special thanks to my colleagues at Google that come from the timing community:
 - Sebastien Jobert
 - Tim Pearson