Time Testing of Cyber-Physical Systems

Aviral Shrivastava

Compiler Microarchitecture Lab Arizona State University

Cyber-Physical Systems (CPS)

- Control is in Software
 - Arbitrarily complex control systems
 - smart cities, smart buildings, smart defense, etc.
- Cyber-Physical Systems
 - networked embedded systems
 - sensor networks with actuation
- Hard-real-time CPS
 - correctness depends on functionality as well as correct timing
 - autonomous cars
- Safety-critical CPS
 - failure of timing can lead to a catastrophe

Achieving right timing in CPS is hard

- Modern computing systems are designed to improve performance at the cost of timing predictability
 - Architecture: Cache, Branch prediction
 - Improves performance, but the latency of instructions becomes unpredictable
 - Operating system: Unbounded preemption
 - Time it takes to serve an interrupt is unbounded

Timing Accuracy: Cycle: ns Instruction: 100 of ns Program: > ms

Achieving right timing is hard!!

- Programming languages have no sense of time
 - Cannot specify, "execute this store operation at 4:00 pm tomorrow."
 - Cannot specify, "execute this loop every 100 ms."
- We use OS facilities to get some handle on time
 - getTimeOfTheDay()
 - delay()
- Programming language cannot guarantee any timing
 - unlike functionality programming language guarantees the functionality irrespective of OS, other tasks on the system, or even hardware – makes guaranteeing functionality easier.

Testing the timing of single-node CPS is hard

- Heterogeneity of CPS components
- Temporal behavior of signals makes observation difficult
 - Digital signals: rise time can change the time of event
 - Analog signals: a system with high frequency components can effect the threshold detection of a signal
 - Noise, cross talk , etc. have effect on the event detection time
- The existing method and equipment are sophisticated
 - Oscilloscopes and digital/signal/frequency analyzers

The time testing methods are customized, and can be hard to reason about!

Testing the timing of distributed CPS is even harder!

- When a CPS is geographically distributed how we can assure that measurements are taken at the same time?
 - Clock drift
 - Synchronization accuracy
 - Synchronization frequency
- How do we combine and make sense of data measured with different monitoring equipment, each with it's own clock, precision, and latency properties.

What we have been doing?

- Define a language to express the timing constraints on distributed CPS
 - Traditional constraint specification languages like CTL, MTL, LTL do not work
 - since they are for state-based systems and digital signals
 - but CPS may have continuous systems and analog signals
 - STL does not work
 - since STL is level triggered, so you can specify
 - Globally if signal A is greater than 5V, then eventually signal B will be less than 1 volt.
 - but, timing constraints are most often between edges/events, so need level-triggered logic.
 - □ Globally, whenever signal A rises above 4V, then within 5 seconds, signal B also rises above 4V.

Timing Constraints in CPS

- Different types of timing constraints
 - Latency between two events.
 - The time interval of two events is the concern
 - ► $\Delta t = 8 3 = 5$
 - LCE $(e_1, e_2, 5)$
 - Simultaneity of several events
 - All signals cross the threshold at the same time
 - The events are chronological
 - The order of events is the matter

The latency between s_1 when it crosses 4v and s_2 goes above 2.5v is 5s

Timing Constraints in CPS (repetitive)

- Frequency of events is a certain amount
 - The frequencies of an events is measured
 - ▶ FC(*e*₁,60Hz,0.06Hz)
 - Frequency= $\frac{1}{t_2-t_1} \pm 0.06s$
 - ▶ $16.65ms \le \frac{1}{t_2 t_1} \le 16.68ms$
- Phase of two signals with the same frequency is the a certain value
 - The time difference between crossing the threshold in two signals in each period
- Two events are sporadic with a minimum time interval
 - When a signal crosses its threshold, it should not be crossed again for a minimum time
- A burst of event is shown up
 - The event should happen for 'd' times then rest for a minimum time 'm'

The latecy between two consecutive events on s_1 is between 16.65ms and 16.68ms

What we have been doing?

- Define a language to express the timing constraints on distributed CPS
 - Traditional constraint specification languages like CTL, MTL, LTL do not work
 - since they are for state-based systems and digital signals
 - but CPS may have continuous systems and analog signals
 - STL does not work
 - since STL is level triggered, so you can specify
 - Globally if signal A is greater than 5V, then eventually signal B will be less than 1 volt.
 - but, timing constraints are most often between edges/events, so need level-triggered logic.
 - □ Globally, whenever signal A rises above 4V, then within 5 seconds, signal B also rises above 4V.

Testbed Structure

Testbed Specs affect measurement

- Data acquisition sampling rate
 - Signal sampling granularity (e.g. 20KS/s)
- ADC resolution
 - Signal amplitude granularity (e.g. 12-bit)

- Clock accuracy
 - Internal clock drift (e.g. 40 ppm)
 - synchronization accuracy (e.g., 1 ms)
 - Synchronization frequency (every 1 second)
- Internal impedance

to avoid loading effect (e.g. 10 MΩ)
 Web page: aviral.lab.asu.edu

Threshold

Time(ms)

Testbed Implementation

- Two cRIOs (NI-9067 and NI-9035)
- Synchronized with IEEE 1588 (PTP)
- Digital/Analog input
- On board FPGA
- **Testing Setup Specifications**
- ADC: 12-bit
- Synchronize every second,
- PTP synchronization,

Case Study 1: Simultaneous Image Capture

- Images from cameras are reconstructed to create a 3-D image
 - May not be able to reconstruct if cameras click at different times, and there is a fast moving object, e.g., soccer ball
 - Maximum delay between the time of the clicks = 100μ s.
- The ArduCAM ESP8266 UNO boards
 - includes a 2MP CMOS camera.
 - built-in ESP8266 Module for wireless communication
- An HTTP web-server is used to send the capture command to both cameras.
- Upon capturing, each ArduCAM board generates a trigger signal on one of the digital I/O pins.

Timing Requirement: Need to capture image of an object within 20 ms. (S(, ,20ms)

```
\varepsilon wcco = 5\mu s + 100ns = 5.1\mu s.

\varepsilon wcco + \varepsilon ADC < 100\mu s.

Output impedance = 470\Omega << input impedance

of cRIO = 1M\Omega
```


Case Study 2: Generator Synchronization

- 2 motors controlled by different controllers, connected to each other via internet
- All generators must operate at 60Hz±0.1%
- Phase cannot be more than 10° different
- two DC motors to
- represent two small generators.
- Master motor sends its rotation frequency and its phase to the otherArduino boards are synchronized with each other using two wireless modules (NRF24L01+, 2.4GHz).
- Power grid case study, required accuracy is 33µs for frequency constraint and 463µs for phase constraint.

Timing

or Same phase \rightarrow

meets the timing requirements. Can validate!

