Carnegie Mellon University Silicon Valley

Timing API for Dynamically Federated Cyber-Physical Systems

Bob lannucci, Ph.D. Carnegie Mellon University

Aviral Shrivastava Arizona State University

April, 2017

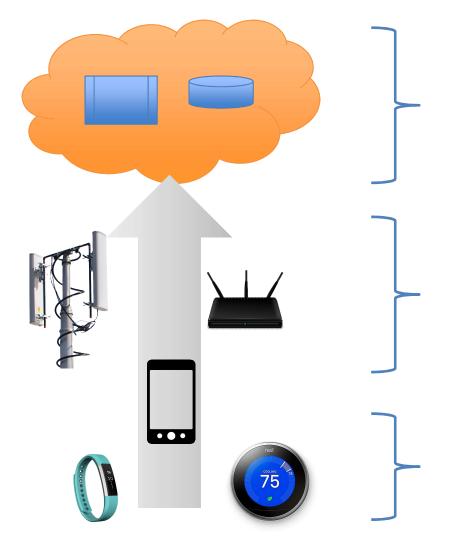
2017 WSTS

Carnegie Mellon University Silicon Valley 1

Key Points

- The IoT is the Fifth platform
- It is inherently cyber-physical
- It will be distributed, federated, and energy-poor
- Time will be a first-order concept in programming it
- Traditional time-keeping approaches won't work
- Time islands may offer a workable abstraction

What is the IoT?


- internet of THINGS
 - WiFi/Bluetooth gadgets
 - Cloud-connected stuff
 - Phone-as-mediator
 - Fitbit, Nest, ...
 - No significant network effect

- **INTERNET** of things
 - Cities, communities
 - Sharing
 - Openness
 - Programmability
 - Significant network effect
 - Cyber-physical

These differing views lead to wildly different thoughts abo

2017 WSTS Carnegie Mellon University Silicon Valley 3

IoT Programing Today

Cloud programming

- Aggregation
- Machine learning
- Visualization

Effectively closed

Embedded programming

- Fixed functionality
- Focused on low-power operati
- Local power OR recharged rec

Sensors in the Real World: the Out-of-Building Experience

- An inside the box (building) IoT is easy but limiting
 - Power, cable plant, WiFi, tame physical conditions
- Outside the box
 - Offers none of these
 - But is essential for logistics, power systems, fleets, smart campuses, smart cities
- Cost of deployment and maintenance
 - Self-sufficient devices
 - 5-10 year lifetime
 - "OHIO"

An Hour in the Life of an OHIO Device: Energy is at a Premium

State	Seconds per hour
Sensing & processing	10
Receiving	10
Transmitting	5
Shut off	3575

- "Perfect" 1000 mAh battery with no energy harvesting
- LP-WAN radio

BI1

• Five year lifetime

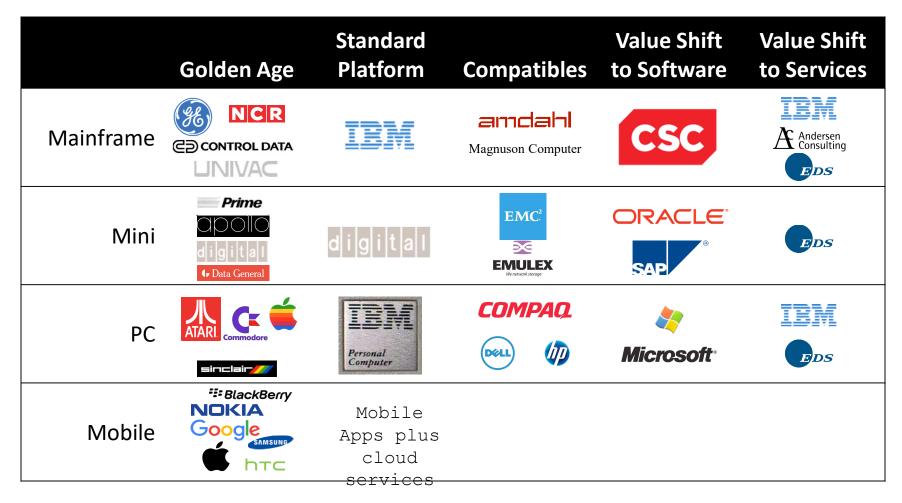
BI1 Compute average current, "few mA for GPS", also show current from CSAC, show cost. Bob lannucci, 11/2/2016

But is the Ultimate Value in Devices?

Transducers	Bottom-of- Pyramid Devices	Middleware and Middle Devices	Aggregation	Federation	Analytics	Business Logic
1-10 trillion	100 billion	1 billion	10,000	10's	1000's	millions
Innovative manufacturing, longevity, electronic data sheets, reliability, repeatability, low power	Low power, low power, low power ("OHIO") Remote programmability, reliable wireless comms, ease of deployment, authentication	Programming tools for fleet deployment and management, version control, provenance management, generational control	Management of enormous volumes of mostly useless data (needle in a haystack), ability to summarize across time and space	Management of dissimilar standards, privacy, security "Marketplace"	Extraction of signals (useful data) from noise, hierarchical processing, real- time response	Traditional services business, tailored to the enterprise

2017 WSTS

Carnegie Mellon UniversitySilicon Valley7


An Uncomfortable Transition to the Future State

- Value is in aggregation of sensed information
- Sensing must be pervasive and flexible
- Pervasive sensing depends on ubiquitous coverage
- Creating coverage is a substantial investment
- Investment justified by a broad base of applications
- The first wave of IoT applications will be vertical
- The real value will come with the transition to horizontally-organized platform
- Similar to the platforms that preceded it

Platformization

In each generation of computing, the emergence of a **standard platform** transforms the industry by shifting value from hardware to software and services.

Computing Platforms: Past and Present

What about the Platform for the Internet of Things?

2017 WSTS Carnegie Mellon University Silicon Valley 10

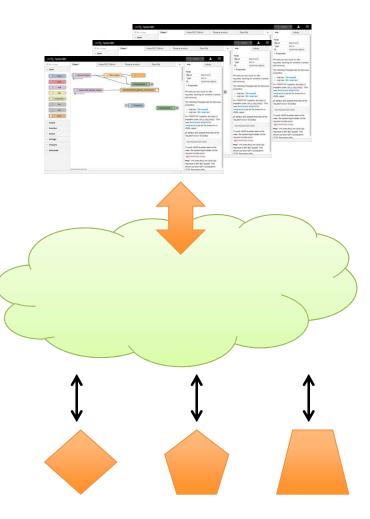
IoT: the Fifth Platform (P5): What to Expect?

P5 will be a *combination* of

- 1. Flexible, powerful, programmable, open device families
- 2. Flexible, powerful, programmable, open networks

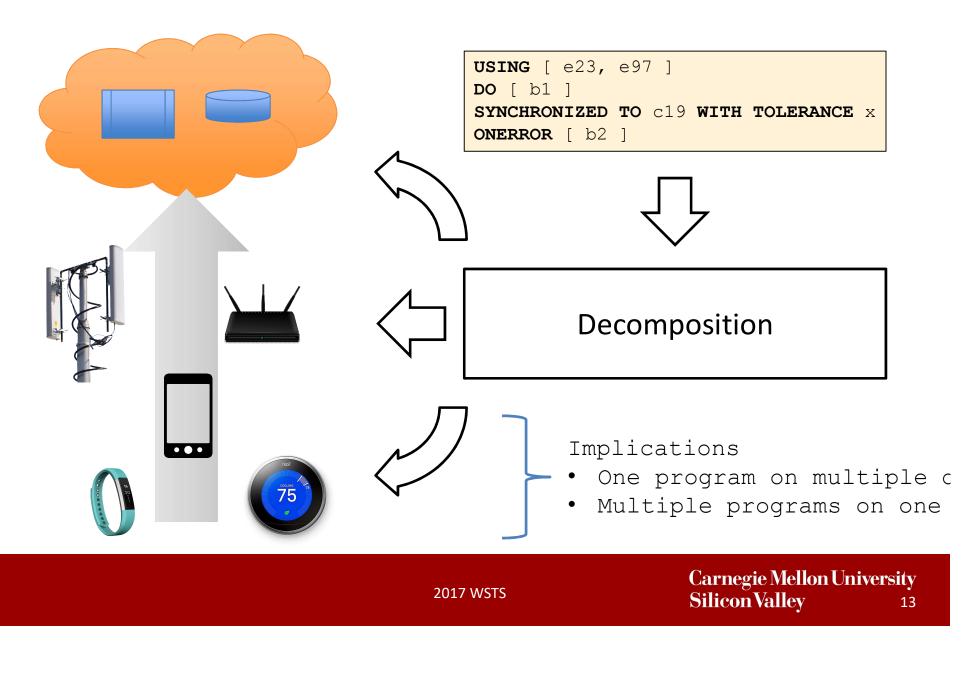
Observation: #1 exists. #2 does not

2017 WSTS


Carnegie Mellon University

11

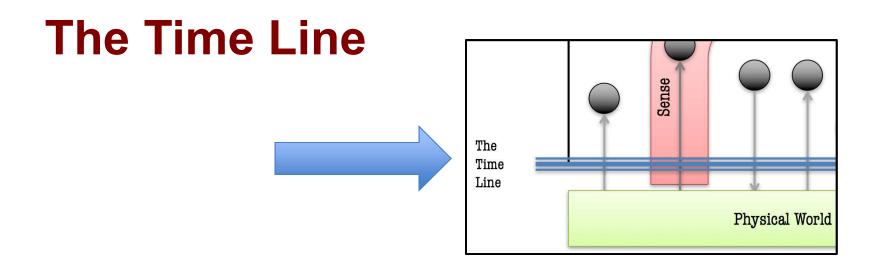
Silicon Valley


Challenges for P5

- Considerable early IoT research focused on creating connectivity
 - Mesh networking *vs*. device power
- LP-WANs shift away from meshes to stars
 - SigFox, LoRa, Ingenu RPMA
- Under-addressed: programming model
 - Device-centric? No, distributed.
 - Cloud-centric? No, too far away.
- Emerging: enabling the network side of the IoT platform
 - Computing moves to minimize latency
 - Better management of the Time Line

Carnegie Mellon University Silicon Valley 12

IoT Programing Future?



The Cyber-Physical Network

2017 WSTS

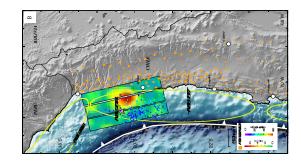
Carnegie Mellon University Silicon Valley 14

- Below the line: time is real
 - Concurrency, simultaneity, causality
- Above the line: time is meta-data
 - Programmer can manipulate the representation of time
- Crossing cyber to physical?
 - Translate programmer's intent to reality not always possible
- Crossing physical to cyber?
 - In a distributed world, how do we time-label events in a way that is correct enough as to not give rise to subsequent errors?

2017 WSTS	Carnegie Mellon University Silicon Valley 15

Crossing the Line: Time Accuracy Requirements

- Crowdsourcing data from smartphones
 - Seconds → milliseconds
- Sensor fusion: situated and airborne sensors
 - Milliseconds \rightarrow microseconds



Networked Situated

Networked UAV Sensors¹

Sensors Coverage: Teng, E., Falcao, J. D., Dominguez, C. R., Mokaya, F., Zhang, P., & Iannucci, B. *Aerial Sensing and Characterization of Three-Dimensional RF Fields*. In Second International Workshop on Robotic Sensor Networks. Seattle, WA. 2015.

Crowdsourcing using Smartphones²

²Minson, S. E., Brooks, B. A., Glennie, C. L., Murray, J. R., Langbein, J. O., Owen, S. E., Heaton, T., Iannucci, R. A. and Hauser, D. L. *Crowdsourced Earthquake Early Warning*. Science Advances, 1(3), 1–7. http://advances.sciencemag.org/content/1/3/e1500036

Carnegie Mellon University Silicon Valley 16

Sensor-Side Timekeeping is Costly

- Coin-cell-powered, OHIO, with 50¢ bill of materials
- GPS
 - Current tech @ 1 minute on/hour: >5 years \rightarrow <2 years
- Cellular modem
 - Current tech: no (protocol overhead, power, cost)
 - NB-IOT: TBD
- CSAC
 - Current tech: 125 mW, \$1k
 - Future: TBD
- TCXO
- Cost of timekeeping has to be sensor-appropriate
- Cost of timekeeping is application-dependent

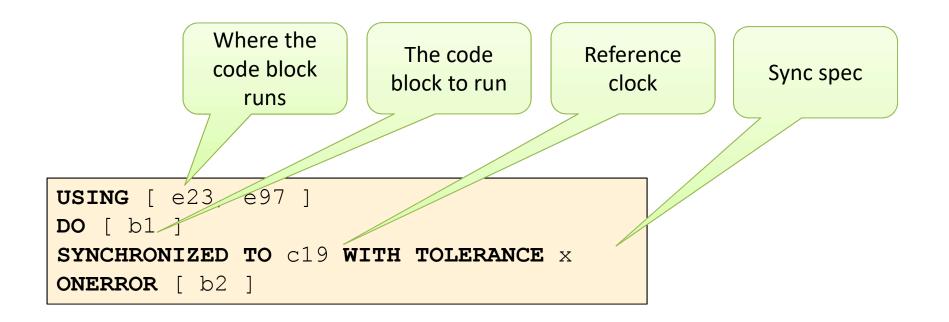
TickTalk: Time-Oriented Meta-Language for P5

- Concept: time complexity of IoT programming must be reduced so that non-specialist programmers can create timecorrect IoT programs including
 - Cloud elements
 - Network elements
 - Sensor / actuator elements
- One program per application instead of three
- Primitives for expressing syntonization, synchronization and simultaneity
- Bounded in time and space time islands

Joint work with Aviral Srivastava,

Silicon Valley

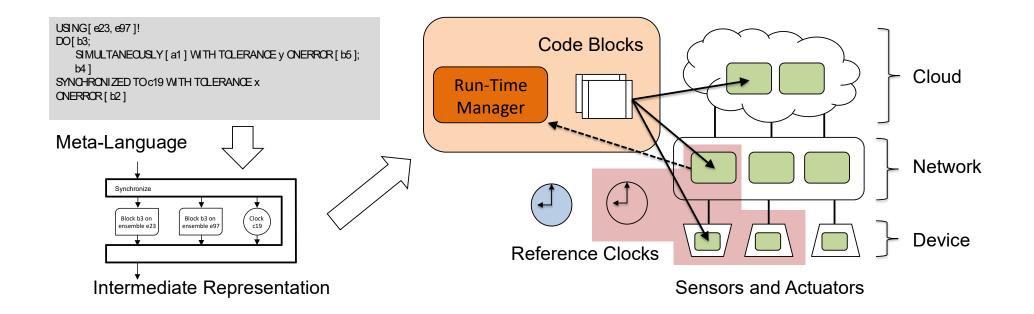
Carnegie Mellon University


18

TickTalk: Core

- An easily-programmed Federation of Cyber-Physical Systems (FSCS)
- An FSCS is a tuple (C, E, B):
 - *C* = { *c*1, *c*2, *c*3, ... } reference clocks
 - E = { e1, e2, e3, ... } computing / storage / communication ensembles. Each has at least one local clock capable of being synchronized to a reference clock. Each may have sensors or actuators.
 - B = { b1, b2, b3, ... } code blocks (program fragments) within which actions can be scheduled against an ensemble's local clock
 Joint work with Aviral Srivastava,

2017 WSTS Carnegie Mellon University Silicon Valley 19


TickTalk: A Program Fragment

Joint work with Aviral Srivastava,

2017 WSTS Carnegie Mellon University Silicon Valley 20


TickTalk: Runtime

Joint work with Aviral Srivastava,

The TickTalk Network Ensemble

Joint work with Aviral Srivastava,

2017 WSTS	Carnegie Mellon University Silicon Valley 22	

Summary

- The IoT is the Fifth platform (P5)
- P5 is inherently cyber-physical
- P5 will be distributed, federated, and energy-poor
- Time will be a first-order concept in programming P5
- Traditional time-keeping approaches won't work
- Time islands may offer a workable abstraction

Further Reading

- Minson, S. E., Brooks, B. A., Glennie, C. L., Murray, J. R., Langbein, J. O., Owen, S. E., Heaton, T, Iannucci, B., and Hauser, D. L. *Crowdsourced Earthquake Early Warning. Science Advances*, 1(3), 1– 7. 2015.
- Teng, E., Falcao, J. D., Dominguez, C. R., Mokaya, F., Zhang, P., and Iannucci, B. Aerial Sensing and Characterization of Three-Dimensional RF Fields. In Second International Workshop on Robotic Sensor Networks. Seattle, WA. 2015.
- Weiss, M., Eidson, J., Barry, C., Broman, D., Goldin, L., Iannucci, B., Lee, E., and Stanton, K. *Time-Aware Applications, Computers, and Communication Systems (TAACCS) Time-Aware Applications, Computers,* 2015.
- Athreya, A. P., Chan-Maestas, H., Katz, E., Tague, P., & Iannucci, B. Energy-Governed Resilient Networked Systems. In *11th Annual IEEE Consumer Communications and Networking Conference*. Las Vegas, NV: IEEE. 2014.
- Mengshoel, O. J., Iannucci, B., & Ishihara, A. (2013). Mobile Computing: Challenges and Opportunities for Autonomy and Feedback. In 8th International Workshop on Feedback Computing. San Jose, CA. 2013.
- Zhang, J., Iannucci, B., Hennessy, M., Gopal, K., Xiao, S., Kumar, S., ... Rowe, A. Sensor Data as a Service -- A Federated Platform for Mobile Data-centric Service Development and Sharing. 2013 IEEE International Conference on Services Computing, 446–453. 2013.
- Zhang, J., Li, Z., Sandoval, O., Xin, N., Ren, Y., Martin, R. A., Iannucci, B., ... Rowe, A. Supporting Personalizable Virtual Internet of Things. In 2013 IEEE 10th International Conference on Ubiquitous Intelligence & Computing (UIC 2013). Sorrento Peninsula, Italy. 2013.

