Emerging Clock Technologies

Tom Heavner Time and Frequency Division NIST

WSTS April 6, 2016

What to Expect

- A short history of the physics and technology of atomic clocks
- Discuss some recent, major advances in atomic physics and the impact on atomic clocks
- From the research lab and into the market place...what to expect in the future

Ideal Atomic Clock

Atoms in free space and unperturbed by the environment (Perfect Vacuum, Absolute Zero, no Electric and Magnetic fields) Perfect Observation (Infinite S/N Ratio) of an Atomic transition

 $\sigma_y(\tau) \cong \frac{1}{Q\left(S/N\right)\sqrt{\tau}}$

"Practical" Ideal Atomic Clock

 $Q = 10^{10}$ (Microwave Transition in Cesium) S/N = 10⁴ at 1 sec (Really Good)

$$\sigma_y(\tau) \cong \frac{10^{-14}}{\sqrt{\tau}}$$

FREQUENCY

Real Atomic Clocks

- Atoms are hot, move at high speeds, undergo collisions
- Atoms can be difficult to control and measure
- The theoretical models are challenging
- Systematic biases can lead to instability
- Need a local oscillator (LO) to support the clock

Atoms used in Atomic Clocks

Each atomic species blends with various technologies to make unique types of clocks

Cesium

For a description of the data, visit physics, nist.gov/data

¹Based upon ¹²C. () indicates the mass number of the most stable isotope

NIST SP 966 (September 2003)

Alkali Atoms and 50+ Years of Atomic Clocks

Hydrogen Maser Large Storage Bulb and Cavity Sophisticated Electronics Magnets

Rubidium Cells

Lamp Rb Isotope allows for Optical Pumping Small Package

<u>Cesium Beams</u> Ramsey Technique/Beam Tube Magnets

Closer Look at Cesium Beam Clocks

- Magnets
- Vacuum System (Ion Pumps and Getters)
- Low-Noise Microwave Sources

A Revolution in Clocks: Laser Cooling

- Narrow Linewidth Laser Sources (100 KHz)
- Stabilized in Frequency
- Accessible to researchers (Low cost Laser Diodes in the IR)
- Fundamental Physics of atom/light interactions
- Optical Molasses in Cesium ($T\sim 1~\mu\text{Kelvin}$)

NIST-Laboratory ECDL circa 1990-2000s

Laser Cooling in Cesium

Laser Cooling Details

NIST-F1: Laser Cooled Cs Fountain

SI Second

- $\sigma_{y}(\tau) \sim 10^{-13} \tau^{-1/2}$ Accuracy ~ 10^{-16}
- Cold Atoms
- Very Large
- \$\$\$\$\$

Going Small with VCSEL Laser Diodes

- Modulate at GHz Range
- Low Power (1 mW)
- Linewidth 50 MHz
- Cannot Laser-Cool Atoms
- But...Perfect for CPT

All-Optical (CPT) Excitation

- Absorption of light drops when modulation frequency equals half of the hyperfine splitting
- Advantage: <u>no microwave cavity required</u>

CSAC – Chip Scale Atomic Clock

NIST Prototype

Microsemi

More Trapping and Cooling: Optical Clocks

Optical Lattice

Ion Traps

Images from NIST Boulder

Optical Clocks and Sub 1 Hz Linewidth Lasers (Local Oscillator)

The Frequency Comb-Linking The Optical and Microwave

Fortier, Diddams NIST Boulder

Current Advanced Clock Products: Two Paths

Big, expensive

Laser Cooled Atoms 2×10^{-13} @ 1 sec $< 4 \times 10^{-15}$ @ 5000 sec

250 W 75 kg

Small, affordable

Microsemi

< 120 mW <17 cm³ < 10⁻¹¹ @ 1000 sec Cost: \$ 10³

Current Research and Problems

- Small, Cold Atom devices
- Small and Low Power Vacuum Pumps
- Passive Pumping
- Micro-Fabrication techniques

Himsworth Group Univ of Southampton, UK

Prototype Miniature chip MOT With Rb Source and Passive Pumping

Dziuban

Micro Ion Pump

Laser Issues for Practical Atomic clocks

- Practical (affordable, small), narrow linewidth laser sources
- Micro-Combs

Vescent Photonics Laser Diode system for Laser-Cooling

End of Presentation