

Optical cesium beam clock for ePRTC telecom applications

Michaud Alain, Director R&D and PLM Time & Frequency, Oscilloquartz Dr. Patrick Berthoud, Chief Scientist Time & Frequency, Oscilloquartz

- Motivation and applications
- Clock sub-systems development
- Clock integration results
- Conclusion and acknowledgment

Identified markets

- **Telecommunication** network reference
 - Telecom operators, railways, utilities, ...
- Science
 - Astronomy, nuclear and quantum physics, ...
- Metrology
 - Time scale, fund. units measurement
- Professional mobile radio
 - Emergency, fire, police
- Defense
 - Secured telecom, inertial navigation
- Space (on-board and ground segments)
 - Satellite mission tracking, GNSS systems

Available Cs clock commercial products

- Long life magnetic Cs clock
 - Stability : **2.7^E-11** $\tau^{-1/2}$, floor = **5^E-14**
 - Lifetime : 10 years
 - Availability : commercial product
- High performance magnetic Cs clock
 - Stability : **8.5^E-12** $\tau^{-1/2}$, floor = **1^E-14**
 - Lifetime : **5 years**
 - Availability : commercial product
- High performance and long life optical Cs clock
 - Stability : **3.0^E-12** $\tau^{-1/2}$, floor = **5^E-15**
 - Lifetime : 10 years
 - Availability : coming soon

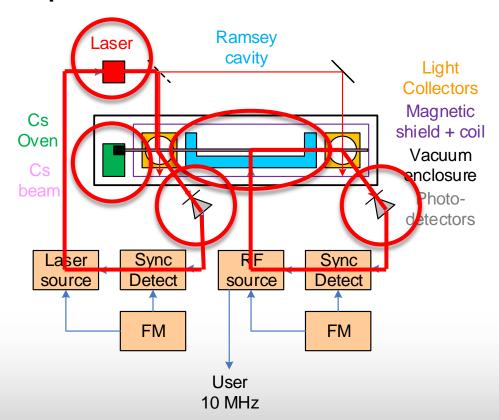
Motivation for an Optical Cs clock

Improved performance (short and long-term stability) for:

- Metrology and time scales
- Science (long-term stability of fundamental constants)
- Inertial navigation (sub-marine, GNSS)
- Telecom (ePRTC = enhanced Primary Reference Time Clock)

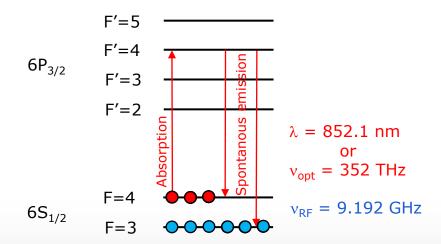
No compromise between lifetime and performance

- Low temperature operation of the Cs oven
- Standard vacuum pumping capacity
- Large increase of the Cs beam flux by laser optical pumping



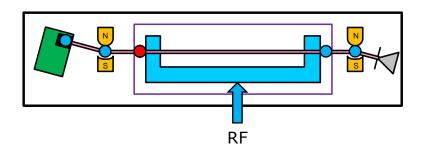
- Motivation and applications
- Clock sub-systems development
- Clock integration results
- Conclusion and acknowledgment

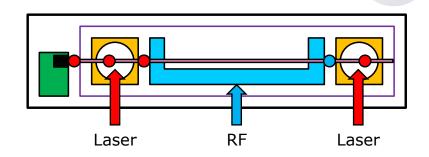
Optical Cesium clock architecture



- Cs beam generated in the Cs oven (vacuum operation)
- Cs atoms state selection by laser
- Cs clock frequency probing (9.192 GHz) in the Ramsey cavity
- Atoms detection and amplification by photodetector (air)
- Laser and RF sources servo loops using atomic signals

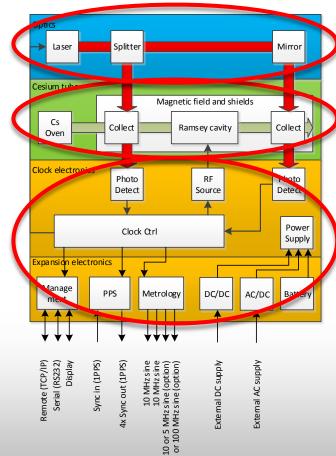
Optical Pumping vs Magnetic Selection


¹³³Cs atomic energy levels



- Atomic energy states
 - Ground states (F=3,4) equally populated
 - Excited states (F'=2,3,4,5) empty
- Switching between ground states F by RF interaction
 9.192 GHz without atomic selection (no useful differential signal)
- Atomic preparation by magnetic deflection (loss of atoms)
- Atomic preparation by optical pumping with laser tuned to F=4 →F'=4 transition (gain of atoms)

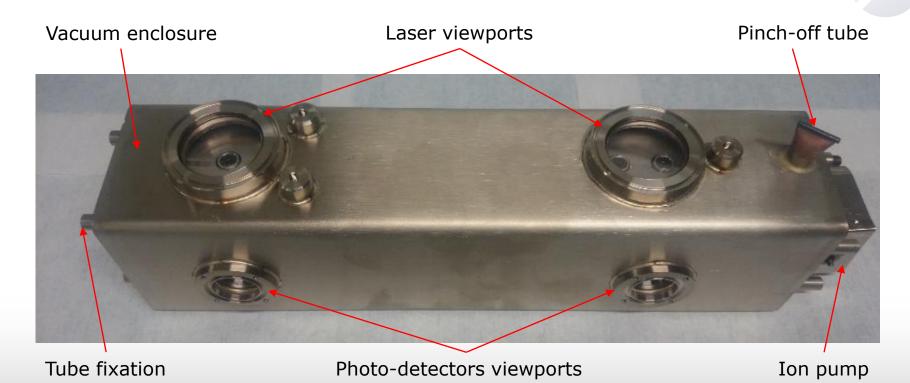
Cesium clock: Magnetic vs. Optical



- Weak flux
 - Strong velocity selection (bent)
 - Magnetic deflection (atoms kicked off)
- Typical performances:
 - 2.7^E-11 $\tau^{-1/2}$
 - 10 years
- Stringent alignment (bent beam)
- Critical component under vacuum (electron multiplier)

- High flux (x100)
 - No velocity selection (straight)
 - Optical pumping (atoms reused)
- Typical performances:
 - 3^{E} -12 $\tau^{-1/2}$
 - 10 years
- Relaxed alignment (straight beam)
- Critical component outside vacuum (laser)
 OSCIII QUARTZ

An ADVA Optical Networking Company


Clock functional bloc diagram

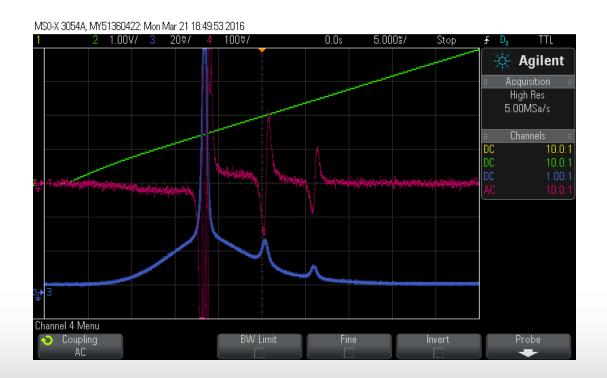
- Cs tube
 - Generate Cs atomic beam in ultra high vacuum enclosure
- Optics
 - Generate 2 optical beams from 1 single frequency laser (no acousto-optic modulator)
- Electronics
 - Cs core electronics for driving the Optics and the Cs tube
 - External modules for power supplies, management, signals I/O

Cs tube sub-assembly

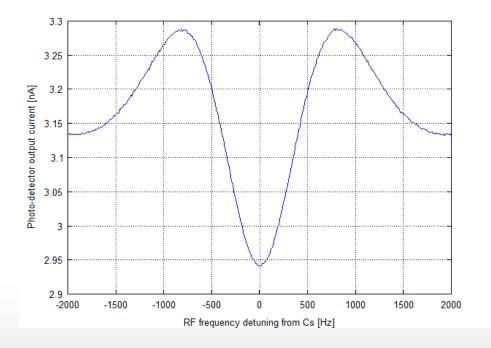
Optics sub-assembly

- Optical sub-system
 - Free space propagation
 - Single optical frequency (no acousto-optic modulator)
 - Redundant laser modules (2)
 - No optical isolator
 - Ambient light protection by cover and sealing (not shown here)
- Laser module
 - DFB 852 nm, TO3 package
 - Narrow linewidth (<1MHz)

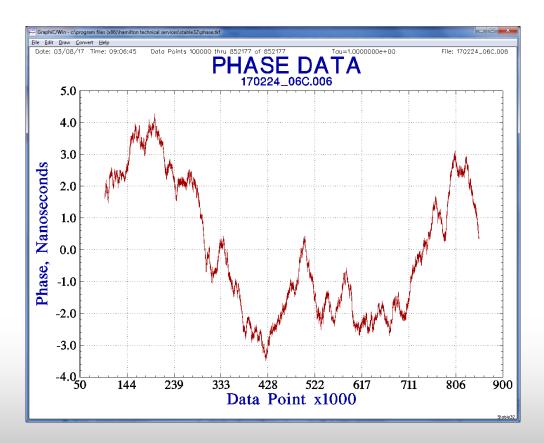
Typical System Integration view



- Motivation and applications
- Clock sub-systems development
- Clock integration results
- Conclusion and acknowledgment


Laser frequency lock

- Green curve: laser current (ramp + AM modulation)
- Blue curve: modulated atomic fluorescence zone A (before Ramsey cavity)
- Pink curve: demodulated atomic fluorescence in zone A
- Automatic laser line identification and laser lock (microcontroller)


Ramsey fringes

- Dark fringe behavior (minimum at resonance)
- Central fringe
 - Amplitude = 350 pA
 - Linewidth = **730 Hz** (FWHM)

Time Interval Error

- Recording of 10 MHz phase output vs H-maser reference clock
- Holdover mode
- Maximum Time Interval Error (Peak-to-Peak):7 ns over 9 days
- No evidence of frequency drift
- Ready to be used for ePRTC

- Motivation and applications
- Clock sub-systems development
- Clock integration results
- Conclusion and acknowledgment

Conclusion and acknowledgment

- Development of an industrial Optical Cesium Clock for ground applications
- Design using laser instead of magnets
 - Better performance
 - No compromise on Cs tube lifetime
- MTIE measured in holdover: 7 ns over 9 days
- Ready to be used for ePRTC

 Acknowledgment: this work is being supported by the European Space Agency

Thank You

IMPORTANT NOTICE

ADVA Optical Networking is the exclusive owner or licensee of the content, material, and information in this presentation. Any reproduction, publication or reprint, in whole or in part, is strictly prohibited.

The information in this presentation may not be accurate, complete or up to date, and is provided without warranties or representations of any kind, either express or implied. ADVA Optical Networking shall not be responsible for and disclaims any liability for any loss or damages, including without limitation, direct, indirect, incidental, consequential and special damages,

alleged to have been caused by or in connection with using and/or relying on the information contained in this presentation.

Copyright © for the entire content of this presentation: ADVA Optical Networking.