

Lee Cosart

lcosart@symmetricom.com

WSTS 2013

Presentation Outline

- Introduction
 - TIE vs. PDV
 - Frequency vs. Time
 - Network vs. Equipment Measurements
 - Phase Detector and Packet Probe
- Metrics: Synchronization and Packet Analysis
 - TIE and PDV based metrics (G.810 and G.8260)
 - Packet selection processes and methods
 - Frequency transport PDV metrics
 - Time transport PDV metrics
- Measurement Case Studies
 - Networks
 - Time/frequency transport
 - Equipment
 - GM, BC, PRTC
- Conclusions

Frequency signal "TIE" vs. "PDV"

- "TIE" (Single Point Measurement)
 - Measurements are made at a single point a single piece of equipment in a single location - a phase detector with reference - is needed

- "PDV" (Dual Point Measurement)
 - Measurements are constructed from packets time-stamped at two points in general two pieces of equipment, each with a reference, at two different locations – are needed

Timestamp A Timestamp B 1233166476.991204496 1233166476.991389744 B 1233166476.980521740 1233166476.980352932 1233166477.006829496 1233166477.007014512 Network 1233166476.996147084 1233166476.995977932 1233166477.022454496 1233166477.022639568 1233166477.011602932 1233166477.011771820 PDV Measurement

and Analysis Software

Time signal "Physical" vs. "Packet"

- "1 PPS" (Single Point Measurement)
 - Measurements are made at a single point a single piece of equipment in a single location - a phase detector with reference - is needed

• "Packet" (Dual Point Measurement)

Timestamp A

 Measurements are constructed from packets time-stamped at two points – in general two pieces of equipment, each with a reference, at two different locations – are needed

F 1286231440.883338640 1286231440.883338796 R 1286231441.506929352 1286231441.506929500 F 1286231442.506929352 1286231442.506929500 F 1286231442.883338640 1286231442.883338796 R 1286231443.506929352 1286231443.506929516

Timestamp B

TIE/PDV Measurements: Network vs. Equipment

Network TIE

Symmetricom TimeMonitor Analyzer (file-counter_gps.dat) Phase deviation in units of time: Fs=58.80 mHz; Fo=1.0000000 Hz; *7/12/2001 2:37:30 PM*; *7/15/2001 3:22:52 PM*; HP 531324, Test: 20; 585034; Samples: 15400; Gate: 15 s; Ref ch1; TI/Time Data Only; TI 1->2;

Equipment TIE

Symmetricom TimeMonitor Analyzer Phase deviation in units of time; Fs=499.4 mHz; Fo=10.000000 MHz; 2006/08/30 17:07:10 Tahiti Phase; Samples: 49036; UUID: 00005501000A; Initial phase offset: 134,730 usec

Network PDV

Packet Probe

Passive Probe

VS.

Active Probe

- (1) Hub or Ethernet Tap
- (2) IEEE 1588 Slave
- (3) Collection at Both Nodes

Passive probe sniffs packets: extra equipment required

- (1) No Hub or Ethernet Tap Needed
- (2) No IEEE 1588 Slave Needed
- (3) Collection at Probe Node Only

Active probe generates protocol: self-contained

Network vs. Equipment PDV Measurement

"TIE" Analysis vs. "PDV" Analysis

"TIE" Analysis

(G.810)

"PDV"
Analysis

(G.8260)

- Phase (TIE)
- Frequency accuracy
- Dynamic frequency
- MTIE
- TDEV

- Phase (PDV)
- Histogram/PDF*,CDF**,statistics
- Dynamic statistics
- MATIE/MAFE
- TDEV/minTDEV/bandTDEV
- Two-way metrics: minTDISP etc.

- The importance of raw TIE/PDV:
 - Basis for frequency/statistical/MTIE/TDEV analysis
 - Timeline (degraded performance during times of high traffic?)
 - Measurement verification (jumps? offsets?)
 - * PDF = probability density function
 - ** CDF = cumulative distribution function

Stability Metrics

- Traditional Clock Metrics
 - ADEV, TDEV, MTIE
 - Traditionally applied to oscillators, synchronization interfaces
 - Also applied to lab packet equipment measurements

GM, BC

- Frequency Transport Packet Metrics
 - minTDEV, MAFE, MATIE
 - Applied to one-way packet delay data
 - FPP/FPR/FPC (floor packet percentage/rate/count)
- Time Transport Packet Metrics
 - minOffset, minTDISP
 - Applied to two-way packet delay data
 - Assesses link asymmetry

Analysis from Phase: Frequency

Frequency Accuracy

$$\omega = \frac{d\phi}{dt}$$
 slope/linear: frequency offset curvature/quadratic: frequency drift

Point-by-point

Segmented LSF

Sliding Window Averaging

Analysis from Phase: MTIE/TDEV

$$MTIE(S) = \max_{j=1}^{N-n+1} \left[\max_{i=j}^{n+j-1} (x_i) - \min_{i=j}^{n+j-1} (x_i) \right]$$

MTIE is a peak detector MTIE detects frequency offset

$$\sigma_{x}(\tau) = TDEV(\tau) = \sqrt{\frac{1}{6} \left\langle \left[\frac{1}{n} \sum_{i=1}^{n} x_{i+2n} - 2 \frac{1}{n} \sum_{i=1}^{n} x_{i+n} + \frac{1}{n} \sum_{i=1}^{n} x_{i} \right]^{2} \right\rangle}$$

TDEV is a highly averaged "rms" type of calculation TDEV shows white, flicker, random walk noise processes TDEV does not show frequency offset

MTIE and TDEV analysis allows comparison to ATIS, Telcordia, ETSI, & ITU-T requirements

Stability metrics for PDV

- Packet Selection Processes
 - **Pre-processed:** packet selection step prior to calculation
 - Example: **TDEV**(PDVmin) where PDVmin is a new sequence based on minimum searches on the original PDV sequence
 - *Integrated:* packet selection integrated into calculation
 - Example: *minTDEV*(*PDV*)
- Packet Selection Methods

- Minimum:
$$x_{\min}(i) = \min[x_j] for(i \le j \le i+n-1)$$

- Percentile:
$$x'_{pct_mean}(i) = \frac{1}{m} \sum_{j=0}^{b} x'_{j+i}$$
- Band: $x'_{band_mean}(i) = \frac{1}{m} \sum_{j=a}^{b} x'_{j+i}$

- Band:
$$x'_{band_mean}(i) = \frac{1}{m} \sum_{j=a}^{n} x'_{j+i}$$

- Cluster:
$$x(n\tau_0) = \frac{\sum_{i=0}^{(K-1)} w((nK+i)\tau_P) \cdot \phi(n,i)}{\sum_{i=0}^{(K-1)} \phi(n,i)} \qquad \phi(n,i) = \begin{cases} 1 & \text{for } |w(nK+i) - \alpha(n)| < \delta \\ 0 & \text{otherwise} \end{cases}$$

Packet Selection Windows

- Windows
 - Non-overlapping windows

 (next window starts at prior window stop)
 - Skip-overlapping windows

 (windows overlap but starting points skip over N samples)
 - Overlapping windows
 (windows slide sample by sample)

- Packet Selection Approaches (e.g. selecting fastest packets)
 - Select X% fastest packets (e.g. 2%)
 - Select N fastest packets (e.g. 10 fastest packets in a window)
 - Select all packets faster than Y (e.g. all packets faster than 150μs)

G.8260 Appendix I Metrics

Figure I.3 – Pre-processed packet selection

Figure I.4 – Integrated packet selection

Metrics including pre-filtering

FPC, FPR, FPP: Floor Packet Count/Rate/Percentage

PDV metrics studying minimum floor delay packet population

Packet Delay Sequence

Packet Delay Sequence

```
R,00162; 1223305830.478035356; 1223305830.474701511 F,00167; 1223305830.488078908; 1223305830.490552012 R,00163; 1223305830.492882604; 1223305830.489969511 F,00168; 1223305830.503473436; 1223305830.505803244 R,00164; 1223305830.508647148; 1223305830.505821031 F,00169; 1223305830.519029300; 1223305830.521302172 R,00165; 1223305830.524413852; 1223305830.521446071 F,00170; 1223305830.534542972; 1223305830.536801164 R,00166; 1223305830.550229692; 1223305830.552551628
```

Packet Timestamps

Forward

#Start: 2009/10/06 15:10:30

0.0000, 2.473E-3 0.0155, 2.330E-3 0.0312, 2.273E-3 0.0467, 2.258E-3 0.0623, 2.322E-3

Reverse

#Start: 2009/10/06 15:10:30 0.0000, 3.334E-3 0.0153, 2.913E-3 0.0311, 2.826E-3 0.0467, 2.968E-3 0.0624, 3.065E-3

Packet Delay Distribution

50pct: 37.65 us; 90pct: 245.5 us; 95pct: 261.9 us; 99pct: 272.3 us; 99.9pct: 274.5 us

Tracked Packet Delay Statistics

23.9 usec

0.000

Mean vs. time shows cyclical ramping more clearly

Standard deviation vs. time shows a quick ramp up to a flat peak

Packet Metrics

minTDEV, bandTDEV, MATIE, MAFE

TDEV
$$\sigma_{x}(\tau) = TDEV(\tau) = \sqrt{\frac{1}{6} \left\langle \left[\frac{1}{n} \sum_{i=1}^{n} x_{i+2n} - 2 \frac{1}{n} \sum_{i=1}^{n} x_{i+n} + \frac{1}{n} \sum_{i=1}^{n} x_{i} \right]^{2} \right\rangle}$$

$$\mathbf{minTDEV} \qquad \sigma_{x_{-}\min}(\tau) = \min TDEV(\tau) = \sqrt{\tfrac{1}{6} \left\langle \left[x_{\min} \left(i + 2n \right) - 2 x_{\min} \left(i + n \right) + x_{\min} \left(i \right) \right]^2 \right\rangle} \quad x_{\min}(i) = \min \left[x_j \right] for(i <= j <= i + n - 1)$$

bandTDEV
$$\sigma_{x_band}(\tau) = bandTDEV(\tau) = \sqrt{\frac{1}{6} \left\langle \left[x'_{band_mean}(i+2n) - 2x'_{band_mean}(i+n) + x'_{band_mean}(i) \right]^2 \right\rangle} \quad x'_{band_mean}(i) = \frac{1}{m} \sum_{j=a}^{b} x'_{j+i}(i) = \frac{1}{m} \sum_{j=a}^{b} x'$$

- 1. TDEV is bandTDEV(0.0 to 1.0)
- 2. minTDEV is bandTDEV(0.0 to 0.0)
- 3. percentileTDEV is bandTDEV(0.0 to B) with B between 0.0 and 1.0

MATIE
$$(n\tau_0) \cong \max_{1 \le k \le N-2n+1} \frac{1}{n} \left| \sum_{i=k}^{n+k-1} (x_{i+n} - x_i) \right|$$
, $n = 1, 2, ..., \text{ integer part (N/2)}$

MAFE
$$(n\tau_0) = \frac{MATIE(n\tau_0)}{n\tau_0}$$

$$\min \mathsf{MAFE} \left(n \, \tau_0 \right) \cong \frac{n \, \tau_0}{\max \left| \sum_{i=k}^{n+k-1} \left(x_{\min} \left(i+n \right) - x_{\min} \left(i \right) \right) \right|}{n \, \tau_0} \quad \text{where n = 1, 2, ..., integer part (N/2) and where } \\ x_{\min} \left(i \right) = \min \left[x_j \, \middle| for \left(i <= j <= i+n-1 \right) \right]$$

References: (1) ITU-T G.8260 Definitions and terminology for synchronization in packet networks, Appendix I, Feb. 2012

(2) ATIS-0900003.2010 Technical Report: Metrics Characterizing Packet-Based Network Synchronization, Oct. 2010.

TDEV & minTDEV with Traffic

Lower levels of noise with the application of a MINIMUM selection algorithm minTDEV at various traffic levels on a switch (0% to 50%) converge

Symmetricom TimeMonitor Analyzer (file=multilayer_switch_40percentSB60.txt) minTDEV; No. Avg=1; Fo=10.00 MHz; 2006/09/19; 15:28:30

Packet Time Transport

"PDV" measurement setup for time transport

- Ideal setup two packet timestampers with GPS reference so absolute latency can be measured as well as PDV over small to large areas
- Alternative setup (lab) frequency (or GPS) locked single shelf with two packet timestampers
- Alternative setup (field) frequency locked packet timestampers PDV but not latency can be measured

Metrics: Time Transport


```
Forward Packet Delay Sequence
                                                  Reverse Packet Delay Sequence
                                                      #Start: 2010/03/06 17:15:30
       #Start: 2010/03/06 17:15:30
                                                      0.0000, 1.11E-6
       0.0000.
                1.47E-6
                                                      0.1000, 1.09E-6
                1.54E-6
       0.1000.
                                                      0.2000, 1.12E-6
       0.2000, 1.23E-6
                                                      0.3000, 1.13E-6
       0.3000, 1.40E-6
                                                      0.4000. 1.22E-6
                1.47E-6
       0.4000,
                                                      0.5000, 1.05E-6
                1.51E-6
       0.5000,
                         #Start: 2010/03/06 17:15:30
                        ➤ 0.0000, 1.47E-6, 1.11E-6 ▲
                         0.1000, 1.54E-6, 1.09E-6
                         0.2000, 1.23E-6, 1.12E-6
                                                          Two-way
                         0.3000, 1.40E-6, 1.13E-6
                                                          Data Set
                         0.4000, 1.47E-6, 1.22E-6
                         0.5000, 1.51E-6, 1.05E-6
                          Time(s) f(\mu s) r(\mu s) f'(\mu s) r'(\mu s)
                          0.0
                                  1.47 1.11
                          0.1
                                 1.54 1.09
                                             1.23
                                                   1.09
Constructing f and r 1
                                                          Minimum Search
                          0.2
                                 1.23 1.12
from f and r with a 3-
                                                          Sequence
                              1.40 1.13
                          0.3
sample time window
                          0.4
                                 1.47 1.22
                                             1.40
                                                   1.05
                                  1.51
                          0.5
                                       1.05
```

Metrics: Time Transport

Packet Time Transport Metrics

Normalized roundtrip:
$$r(n) = \left(\frac{1}{2}\right) \cdot \left[F(n) + R(n)\right]$$

Normalized offset:
$$\eta_2(n) = \left(\frac{1}{2}\right) \cdot \left[F(n) - R(n)\right]$$

minRoundtrip:
$$r'(n') = \left(\frac{1}{2}\right) \cdot \left[F'(n') + R'(n')\right]$$

minOffset:
$$\eta_2'(n') = \left(\frac{1}{2}\right) \cdot \left[F'(n') - R'(n')\right]$$

minTDISP (minimum time dispersion): minOffset {y} plotted against minRoundtrip {x} as a scatter plot

minOffset statistics: minOffset statistic such as mean, standard deviation, or 95 percentile plotted as a function of time window tau

Metrics: Time Transport

minOffset Statistics

(Two-way minimum offset statistics vs. tau)

Symmetricom TimeMonitor Analyzer Time stats plot in units of time: 2008/09/04: 16:55:05 minOffset mean (blue); minOffset stddev (red); minOffset 95% (magenta) 50.0 usec 5.00 usec/div ninOffset 95% minOffset stdde 0.0 -5.00 1.000 sec 10.00 sec 100.0 sec 1.000 ksec usec

Two-way MAFE (MAFE of minOffset)

Symmetricom TimeMonitor Analyzer (file=probe-2008_09_04-12_54d.tpk)
MAFE; Fo=10.00 MHz; Fs=100.6 mHz; 2008/09/04; 16:55:05

Asymmetry in Wireless Backhaul

(Ethernet wireless backhaul asymmetry and IEEE 1588 slave 1PPS under these asymmetrical network conditions)

Packet measurement

Packet data analysis: 1PPB offset predicted

MTIE; Fo=2.048 MHz; Fs=499.8 mHz; 2009/09/04; 17:08:49

Sync measurement

1588 slave performance: 1 PPB offset measured

Metro Ethernet Network

National Ethernet Network

Forward and reverse packet delay sequences with zooms into the respective floors and minTDISP

Public Internet w/ Cable Modem Access (NTP probe)

Downstream maintains 8.7 msec minimum

Upstream minimum steps from 4.9 msec to 6.4 msec for 35 minutes

Public Internet w/ ADSL Modem Access (NTP probe)

Downstream typically 9.0 msec minimum

Upstream typically 6.7 msec minimum, steps to 70 msec for 1 hour

Not shown: delays as much as several seconds

Case Studies: Grandmaster Clock

Grandmaster Measurement Setup

Case Studies: Grandmaster Clock

Raw unfiltered probe measurement

Overlay of filtered probe and 1PPS measurement

Case Studies: Grandmaster Clock

Traditional Metrics Applied to Filtered Probe Measurement

Boundary Clock Measurement Setup

Boundary Clock Measurement: 3 Approaches

(1) Packet probe; (2) BC 1PPS; (3) Connected slave 1PPS

Three boundary clocks from three vendors

Loaded 8-node network

Symmetricom TimeMonitor Analyzer MTIE; Fo=1.000 Hz; Fs=498.9 mHz; 2011/04/09; 09:24:40

Characterizing PRTC Accuracy

- A stable and accurate time reference is required. A cesium clock alone will not suffice.
- Possible candidates for such a reference:
 - National metrology lab reference
 - —Carefully calibrated "golden" reference GPS receiver
- We need to understand both the accuracy and the stability characteristics of such a reference.
- We need to consider that both the reference and the PRTC under test may deliver different performance under conditions of constant temperature and varying temperature.

"Golden" Reference GPS Receiver Stability

Measurement Setup

Note: Measurements conducted at constant room temperature.

"Golden" Receiver Stability Performance

Raw results vs. 3 cesium clocks

Cesium 1 (blue): 3.573E-13 Cesium 2 (red): 1.579E-13 Cesium 3 (violet): -5.428E-13

Symmetricom TimeMonitor Analyzer
Phase deviation in units of time; Fs=1.000 Hz; Fo=1.0000000 Hz; 2012/02/03; 15:35:09

Results with respective cesium offsets removed

Symmetricom TimeMonitor Analyzer
Phase deviation in units of time; Fs=1.000 Hz; Fo=1.0000000 Hz; 2012/02/03; 15:35:09

Zoom into 12 hour section of 10-day measurement

"Golden" Receiver Stability Performance

Symmetricom TimeMonitor Analyzer Phase deviation in units of time; Fs=1.000 Hz; Fo=1.0000000 Hz; 2012/02/03; 15:35:09 RefGPS (violet) and GM (gray) measured against cesium

"Golden" vs. conventional GPS receiver

Symmetricom TimeMonitor Analyzer
Phase deviation in units of time; Fs=1.000 Hz; Fo=1.0000000 Hz; 2012/02/03; 15:35:09
4 (green): Phase; Samples: 831170; HP 53132A; Avg 74/75/76 9.6 days; 2012/02/03; 15:35:09

Three "Golden" measurements averaged together

"Golden" Receiver Stability Performance

Symmetricom TimeMonitor Analyzer MTIE: Fo=1,000 Hz: Fs=1,000 Hz: 2012/02/03: 15:35:09

"Golden" receiver MTIE performance

Symmetricom TimeMonitor Analyzer TDEV; Fo=1.000 Hz; Fs=1.000 Hz; 2012/02/03; 15:35:09

"Golden" receiver TDEV performance

Summary

- Types of measurements
 - Frequency, Time, and Packet Signals
 - "TIE" vs. Packet "PDV"
 - Network vs. Equipment
 - Packet probes: passive vs. active, PTP vs. NTP

Clock and Packet Analysis

- TIE analysis methods inform approach to PDV analysis
- Stability metrics (1) Preprocessed or (2) Integrated packet selection
- Frequency transport metrics
- Time transport metrics

Measurement Case Studies

- Networks
 - · Wireless backhaul: frequency and asymmetry
 - Metro/National Ethernet (PTP probe)
 - ADSL/Cable modem access (NTP probe)
- Equipment
 - IEEE 1588 GM & BC (measurements on physical signal or packet signal)
 - PRTC: Four GPS receiver comparison (common antenna and common measurement reference)
 - PRTC: "Golden" receiver stability

Thank You

Lee Cosart

Senior Technologist

lcosart@symmetricom.com

Phone: +1-408-428-6950

Symmetricom, Inc. 2300 Orchard Parkway San Jose, CA 95131-1017 Tel: +1 408-428-7907

Fax: +1 408-428-6960