Booz | Allen | Hamilton®

SYNC MASTERS

WSTS 2019 TUTORIAL SESSION March 25, 2019

Marc A. Weiss, Ph. D. Consultant marcweissconsulting@gmail.com

ITU-T STANDARDS

Application/ Technology	Accuracy	Specification
PRTC (Primary Reference Time Clock) (Source)	±100 ns with respect to UTC (PRTC-A) ±40 ns with respect to UTC (PRTC-B)	[ITU-T G.8272]
ePRTC (Enhanced Primary Reference Time Clock) (Source)	±30 ns with respect to UTC	[ITU-T G.8272.1]

PRIMARY SOURCES FOR TIME AND FREQUENCY

- Atomic Clocks
- •GNSS
- Conclusions
- Extra Slides

ATOMIC FREQUENCY STANDARDS: PRODUCE FREQUENCY LOCKED TO AN ATOMIC TRANSITION

BASIC PASSIVE ATOMIC CLOCK

- 1. Obtain atoms to measure
- 2. Depopulate one hyperfine level
- 3. Radiate the state-selected sample with frequency v
- 4. Measure how many atoms change state
- 5. Correct v to maximize measured atoms in changed state

BLOCK DIAGRAM OF ATOMIC CLOCK PASSIVE STANDARD

TYPES OF COMMERCIAL ATOMIC CLOCKS

- Cesium thermal beam standard
 - Best long-term frequency stability
- Rubidium cell standard
 - Small size, low cost
- Hydrogen maser
 - Best stability at 1 to 10 days (short-term stability)
 - Expensive several \$100K
- Chip Scale Atomic Clock (CSAC)
 - Very small size, low power
- Note that new clocks are under development!

HOLDING A MICROSECOND AFTER LOSS OF SYNC (CIRCA 2015)

	Temperature Controlled Crystal Oscillator (TCXO)	Oven Controlled Crystal Oscillator (OCXO)	Rubidium (RB) Cell Atomic Frequency Standard (5*10 ⁻¹² /mo. aging)	Chip Scale Atomic Clock (CSAC)
Range of time intervals that can hold one microsecond	10 - 30 minutes	0.5 - 8 hours	8 hours – 3 days	1 – 2 days
Cost range	\$5-25	\$25-250	\$250-1500	\$1000-2000

CONCLUSIONS: ATOMIC STANDARDS

- Rubidium, cesium, and hydrogen atomic frequency standards share a common theme: the stabilization of an electronic (quartz) oscillator with respect to an atomic resonance.
- Although the use of atoms brings with it new quantum mechanical problems, the resulting long-term stability is unmatched by traditional classical oscillators.

THE GENERATION OF UTC: TIME ACCURACY

ANY REAL TIME UTC IS ONLY A PREDICTION, A PLL WITH A ONE-MONTH DELAY

PRIMARY SOURCES FOR TIME AND FREQUENCY

- Atomic Clocks
- GNSS
- Conclusions
- Extra Slides

THE FAMILY OF GLOBAL NAVIGATION SATELLITE SYSTEMS

Others are Regional Navigation Satellite Systems

TWO MESSAGES ABOUT GNSS

- 1. GNSS are extremely useful
 - 1. Constellations are growing
 - 2. Provide reliable, extremely accurate real-time UTC time and frequency for mostly free
 - 3. Excellent navigation
 - 4. A global > \$100B industry
- 2. GNSS signals are dangerously vulnerable to both accidental and intentional interference

GNSS SYSTEMS: GENERAL PROPERTIES

- Position, Navigation, Timing (PNT)
- Four + synchronized timing signals from known locations in space required for navigation
- Two + frequencies measure ionosphere
- Control, Space, User Segments
- Open and Restricted Services
- All signals are weak and clustered in the spectrum
 - Allows interoperability
 - But also makes it is relatively easy to jam GNSS and spoof

Booz Allen Hamilton, Inc.

GNSS VULNERABILITY

- GNSS best feature and worst problem: it is extremely reliable
- Jamming Power Required at GPS Antenna
 - On order of a Picowatt (10⁻¹² watt)
- Many Jammer Models Exist
 - Watt to MWatt Output Worldwide Militaries
 - Lower Power (<100 watts); "Hams" Can Make

JAMMING EVENTS, HOUR OF DAY NUMBER OF EVENTS PER HOUR 10/2016 TO 10/2018

JAMMING EVENTS, DAY OF WEEK NUMBER OF EVENTS PER DAY 10/2016 TO 10/2018

DISRUPTION MECHANISMS - SPOOFING/MEACONING

- Spoof Counterfeit GNSS Signal
 - C/A Code Short and Well Known
 - Widely Available Signal Generators
- Meaconing Delay & Rebroadcast
- Possible Effects
 - Long Range Jamming
 - Injection of Misleading PVT Information
- No "Off-the-Shelf" Mitigation

CIVIL GPS SPOOFING THREAT CONTINUUM*

* Courtesy of Coherent Navigation, Inc

SDR IS MAKING SPOOFING EASY

Standard Engineering School classes teach techniques for signal generation that easily apply to spoofing

PRIMARY SOURCES FOR TIME AND FREQUENCY

- Atomic Clocks
- •GNSS
- Conclusions
- Extra Slides

CONCLUSIONS

- Atomic clocks are accurate and/or stable by design
 - Cs. can be a primary frequency standard
 - Others can be very stable
- GNSSs are very accurate both for time and frequency, many signals free for use, and are very reliable
 - Perhaps their greatest advantage and disadvantage!
 - Signals are subject to interference

THANKS FOR YOUR ATTENTION!

EXTRA SLIDES FOLLOW

PRIMARY SOURCES FOR TIME AND FREQUENCY

- Atomic Clocks
- Time and Frequency Transfer
- •GNSS
- Conclusions
- Extra Slides

FREQUENCY ACCURACY: HISTORY OF NIST PRIMARY FREQUENCY STANDARDS

CLOCK STABILITY

Clock (in)stability is given by:

Clock stability can be improved by: Increase Ramsey (observation) times (decrease $\Delta \omega = 1/T_{Ramsey}$) Improve the S/N (more atoms!) Increase the frequency of the clock transition (optical?)

CESIUM STANDARD

Atoms come from an oven in a beam
A magnet is used to deflect the atoms in different hyper-fine states

- Atoms pass through a Ramsey cavity in a magnetic field to be exposed to microwaves at frequency v = 9.193 GHz
- A second magnet selects atoms which have made the transition
 - The number of detected atoms is used to tune the frequency

COMMERCIAL CESIUM STANDARDS

•Laboratory/Timekeeping

•Telecom

•Space/GPS

•Courtesy of Robert Lutwak, Symmetricom

RUBIDIUM STANDARD

- Two major differences from a cesium standard
 - 1. Cell standard (doesn't use up rubidium)
 - 2. Optically pumped (no state selection magnets)
- Used where low cost and small size are important

RUBIDIUM STANDARD

•Adapted from figure by John Vig

OPTICAL MICROWAVE DOUBLE RESONANCE SIMPLIFIED RB ENERGY LEVEL DIAGRAM

- Optical pumping is used to deplete one hyperfine level
- Light tuned to the transition frequency from "A" to the unstable excited state puts all of the atoms in the hyper-fine state "B"

- Microwaves at v = 6.835 GHz stimulate the transition from "B" to "A"
- The absorption of light is measured
- The frequency ν is tuned to minimize the light coming through the 87 Rb cell

FREQUENCY STABILITY OF A RUBIDIUM STANDARD

•Courtesy of Robert Lutwak, Symmetricom

COMMERCIAL RUBIDIUM STANDARDS

HYDROGEN MASER (ACTIVE STANDARD)

Adapted from a figure by John Vig

Booz Allen Hamilton, Inc.

HYDROGEN MASER (ACTIVE STANDARD)

FREQUENCY DRIFT OF A COMMERCIAL CESIUM STANDARD AND A HYDROGEN MASER

FREQUENCY STABILITY OF A CESIUM STANDARD (NO FREQUENCY DRIFT REMOVED)

COMMERCIAL ACTIVE HYDROGEN MASER

Courtesy of Robert Lutwak, Symmetricom

Booz Allen Hamilton, Inc.

HEQUENCY STABILLY OF A HYDROGEN MASER

(FREQUENCY DRIFT REMOVED – 1X10⁻¹⁶/DAY TYPICAL)

SOMETHING NEW!

• Chip Scale Atomic Clock (CSAC)

- 1. Cesium cell standard
 - 2. Coherent Population Trapping (CPT)
- Very small size and low power consumption, but better performance than a quartz oscillator

OSCILLATOR COMPARISON

Technology	Intrinsic Accuracy	Stability (1s)	Stability (floor)	Aging (/day) initial to ultimate	Applications
Cheap Quartz, TCXO	10 ⁻⁶	~10 ⁻¹¹	~10 ⁻¹¹	10 ⁻⁷ to 10 ⁻⁸	Wristwatch, computer, cell phone, household clock/appliance,
Hi-quality Quartz, OCXO	10 ⁻⁸	~10 ⁻¹²	~10 ⁻¹²	10 ⁻⁹ to 10 ⁻¹¹	Network sync, test equipment, radar, comms, nav,
Rb Oscillator	~10 ⁻⁹	~10 ⁻¹¹	~10 ⁻¹³	10 ⁻¹¹ to 10 ⁻¹³	Wireless comms infrastructure, lab equipment, GPS,
Cesium Beam	~10 ⁻¹³	~10 ⁻¹¹	~10 ⁻¹⁴	nil	Timekeeping, Navigation, GPS, Science, Wireline comms infrastructure,
Hydrogen Maser	~10 ⁻¹¹	~10 ⁻¹³	~10 ⁻¹⁵	10 ⁻¹⁵ to 10 ⁻¹⁶	Timekeeping, Radio astronomy, Science,

•Courtesy of Robert Lutwak, Symmetricom

OSCILLATOR COMPARISON (CONTINUED)

Technology	Size	Weight	Power	World Market	Cost
Cheap Quartz, TCXO	\approx 1 cm ³	pprox 10 g	≈ 10 mW	pprox 10 ⁹ s/year	≈ \$1s
Hi-quality Quartz, OCXO	≈ 50 cm³	≈ 500 g	≈ 10 W	≈ 10Ks/year	≈ \$100s
Rb Oscillator	$\approx 200 \text{ cm}^3$	≈ 500 g	≈ 10 W	≈ 10Ks/year	≈ \$1000s
Cesium Beam	≈ 30,000 cm ³	≈ 20 kg	≈ 50 W	≈ 100s/year	≈ \$10Ks
Hydrogen Maser	≈ 1 m ³	≈ 200 kg	≈ 100 W	≈ 10s/year	≈ \$100Ks

•Courtesy of Robert Lutwak, Symmetricom

PRIMARY SOURCES FOR TIME AND FREQUENCY

- Atomic Clocks
- Time and Frequency Transfer
- GNSS
- Conclusions
- Extra Slides

TIME AND FREQUENCY TRANSFER

- Accuracy and Stability are the Concerns
 - Time Transfer Accuracy Requires Calibrating Delays
 - Time Stability = Frequency Accuracy
- Continuous vs Intermittent Measurements

One-Way Dissemination or Comparison System

Clock 1 Systematics and Noise

Delay, Measurement Noise and Path Perturbations Clock 2 Systematics and Noise Two -Way Comparison System

(e.g. IEEE1588 – PTP)

Clock 1 Systematics and Noise

Measurement Noise and Path Perturbations Largely Reciprocal:

a l:

 $d_{21} = d_{12}$

Clock 2 Systematics and Noise

Clock Hierarchies

Clock 1 Systematics and Noise

Lock Loop Systematics and Noise: Contributions from Delay, Measurement Noise and Path Perturbations Clock 2 Systematics and Noise

TWO-WAY HAS FOUR TIME STAMPS

IDEAL TWO-WAY COMPUTATION

- Signal A: t_{31} = Clock2(t_3) Clock1(t_1)
- Signal B: t_{42} = Clock1(t_4) Clock2(t_2)
- Assume Clock1 is correct, Clock2 has an offset or error *E*, and Delays, *D*, are reciprocal
 - $\operatorname{Clock1}(t_j) = t_j, \operatorname{Clock2}(t_j) = t_j E$
 - Transmission times on local clocks: $Clock2(t_2) = Clock1(t_1)$, i.e. $t_2 = t_1 + E$
 - Reciprocal Delays: $d_{12} = d_{21} = D$

• Then
$$t_2 = t_1 + E$$
, $t_3 = t_1 + D$, $t_4 = t_2 + D$

- Then $t_{31} = \text{Clock2}(t_3) \text{Clock1}(t_1) = t_3 E t_1 = t_1 + D E t_1 = D E$
- And $t_{42} = \text{Clock1}(t_4) \text{Clock2}(t_2) = t_4 (t_2 E) = t_2 + D (t_2 E) = D + E$
- Therefore
 - $D = \frac{1}{2} (t_{42} + t_{31})$
 - $E = \frac{1}{2} (t_{42} t_{31})$

SYNCHRONIZATION VS SYNTONIZATION

Two Separate Concepts Both called "Synchronization" in Telecom

Synchronization

Same Time Same Phase Phase Lock

Syntonization Same Frequency Frequency Lock \Rightarrow Phase Offset Unbounded

HOW TO CHARACTERIZE ATTRIBUTES OF TIME AND FREQUENCY TRANSFER SYSTEMS

- 1. Time Transfer Accuracy
 - 1. Agreement with the "true" clock difference
 - 2. Evaluate with a more accurate transfer system
 - 3. Never better than stability
- 2. Time Transfer Stability -- Plot x(t)
 - 1. TDEV, $\sigma_x(\tau)$
 - 2. Spectrum, $S_x(f)$
- 3. Frequency Transfer Accuracy
 - 1. Directly related to time transfer stability
 - 2. A function of averaging time, τ , and processing
- 4. Frequency Transfer Stability-- Plot y(t)
 - 1. ADEV, $\sigma_v(\tau)$
 - 2. Spectrum, $S_v(f)$
 - 3. Estimate Drift

SUMMARY: TIME AND FREQUENCY TRANSFER SYSTEMS

- Time: Calibrate the Delay
- Stability: Keep the delay constant
- Issues
 - Accuracy
 - Stability
 - Uncertainty
 - Systematic vs Random Deviations
- Syntonization vs Synchronization

PRIMARY SOURCES FOR TIME AND FREQUENCY

- Atomic Clocks
- Time and Frequency Transfer
- GNSS
- Conclusions
- Extra Slides

TIME FROM GNSS: INTENTIONAL AND UNINTENTIONAL ERROR SOURCES

TIME FROM GNSS

- Clocks on Satellite Vehicles (SVs) are free-running
 - Data provides the offset in Time and Frequency
 - System time is offset from UTC
- The positions of the satellite and receiver are needed for the delay
- SV Clocks and positions are *predicted* and uploaded, for GPS about once per day

GNSS-aided Time and Frequency Systems

GNSS REFERENCES

- GPS
 - CGSIC 2018 https://www.gps.gov/cgsic/meetings/2018/
 - Coast Guard Nav Center http://www.navcen.uscg.gov/
- Galileo http://www.gsc-europa.eu/system-status/Constellation-Information
- Glonass <u>http://www.sdcm.ru/smglo/grupglo?version=eng&site=extern</u>
- Beidou:
 - IGS page http://igs.org/mgex/Status_BDS.htm
- General
 - GPS World http://gpsworld.com/
 - Inside GNSS <u>http://www.insidegnss.com/</u>