

a **MICROCHIP** company

Rb Atomic Clocks for wireless mobile(5G) and Test & Measurement applications

Will Krzewick, Senior Engineer - Applications

Clocks BU

© 2019 Microsemi, a wholly owned subsidiary of Microchip Technology Inc.

Agenda

- Test & Measurement requirements and Oscillator options
 - Legacy and new options
- Reasons to consider Gas cell clocks
 - g-sensitivity, vibration/shock, drift performance data
- New Features/enhancements of Rb-CPT clocks
 - Drift, calibration, warm-up time, retrace, temperature sensitivity data

Traditional Oscillator Requirements for the T&M market

- Low profile height, small size
- Good phase noise & ADEV
- Low aging (enables long calibration cycle time)
- Low power consumption (enables batterypowered applications)
- Temperature Stability (for mobile applications)
- OCXO was the traditional choice due to low power, cost, size and STS.
- Lamp offered good stability, but too big.

	ОСХО	Rb-Lamp	
Cost	\$	\$\$\$	
Power (W)	3 to 4	10 to 18	
Volume (cm ³)	15 to 20	200 to 500	
<u>Warm-up time</u> :			
-Time to 5x10 ⁻⁸ (min's.)	3	5	
-Time to 1x10 ⁻¹⁰ (min's.)	n/a	12	
1PPS calibration	No	Yes	
Temperature range (°C)	-40 to +85	-10 to +75	
<u>Stability</u> :			
-TempCo (x10 ⁻⁹)	±0.4	<0.6	
-ADEV @1s (x10 ⁻¹²)	5	10 to 30	
-Aging/month (x10 ⁻¹¹)	83	5	
-Retrace (x10 ⁻¹⁰)	20	0.2	

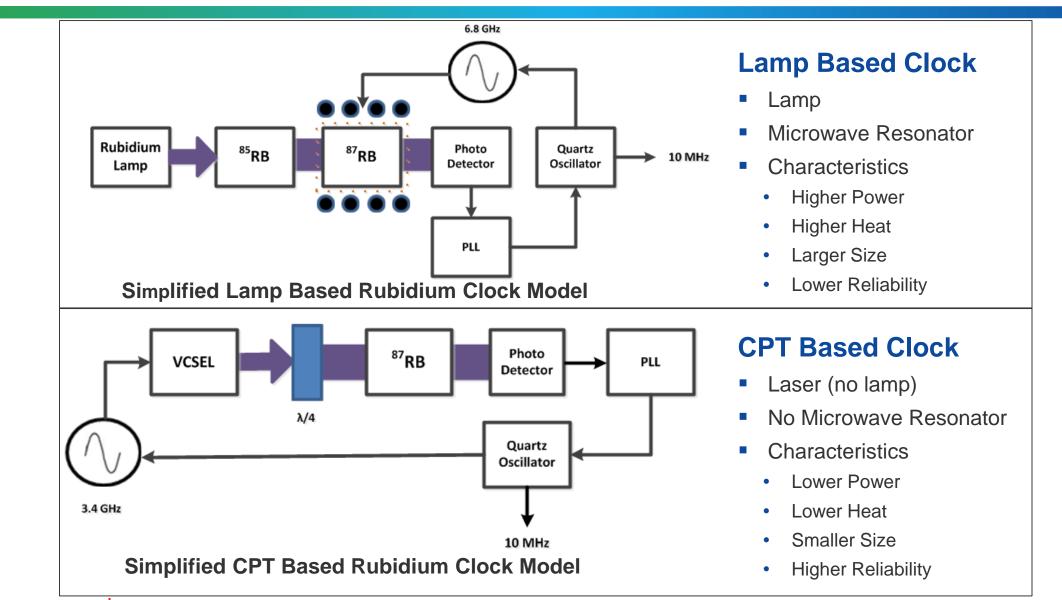
Telecom Oscillator Requirements for the T&M market

- Modern Telecom measurement requirements:
 - SyncE (G.826x) and IEEE1588v2 (PTP) Measurements require Nanosecond accuracy
 - Packet Delay Variation (PDV)
 - Time Error
 - Needs to be maintained w/o GNSS (±45ns to UTC): vendor requirement for stable environment test
 - Ethernet and IP one-way delay (OWD) network latency
 - Locate assymmetric network delays
 - Ability to emulate a PTP grand master (PRTC) base station-level accuracy
 - Frequency accuracy <1.5E-11 over 2 hours, 2.5E-11/day
 - Longer duration/variable temperature requirements:
 - Timing accuracy of 300ns (holdover) in 10,000s (~2.5hours)
 - Timing accuracy in variable temperature environment: 7us (holdover) in 24hours (0 to +60C range).
 - 1PPS input for GNSS receiver disciplining, Time-of-Day information

Tighter timing requirements have necessitated high performance oscillators as a reference. Rb is one option to consider...

Oscillators options for T&M

 Rb-CPT clocks emerged 10 years ago as alternative to OCXO to meet more stringent timing requirements

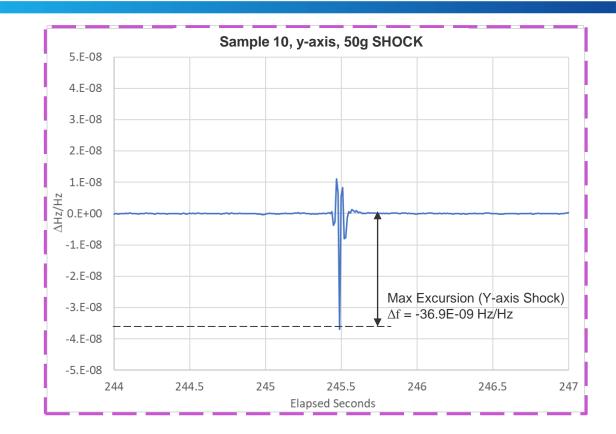

- Smaller size with minor compromise in performance, compared to lamp.
- Modern Rb-CPT has closed the Lamp performance gap.
 - Enabled by higher processing power and electronics miniaturization
 Microsemi.

	ОСХО	Rb-Lamp	Rb-CPT	(Next-Gen) Rb-CPT
Cost	\$	\$\$\$	\$\$\$	\$\$\$
Power (W)	3 to 4	10 to 18	5	6.5
Volume (cm ³)	15 to 20	200 to 500	50	50
<u>Warm-up time</u> :				
-Time to 1x10 ⁻¹⁰ (min's.)	n/a	12	15	7
1PPS calibration	No	Yes	No	Yes
Temperature range (°C)	-40 to +85	-10 to +75	-10 to +75	-40 to +75
Stability:				
-TempCo (x10 ⁻⁹)	±0.4	<0.6	<0.1	<0.1
-ADEV @1s (x10 ⁻¹²)	5	10 to 30	30	20
-Aging/month (x10 ⁻¹¹)	83	5	10	5
-Retrace (x10 ⁻¹⁰)	20	0.2	0.5	0.5

Agenda

- Test & Measurement requirements and Oscillator options
 - Legacy and new options
- Reasons to consider Gas cell clocks
 - g-sensitivity, vibration/shock, drift performance data
- New Features/enhancements of Rb-CPT clocks
 - Drift, calibration, warm-up time, retrace, temperature sensitivity data

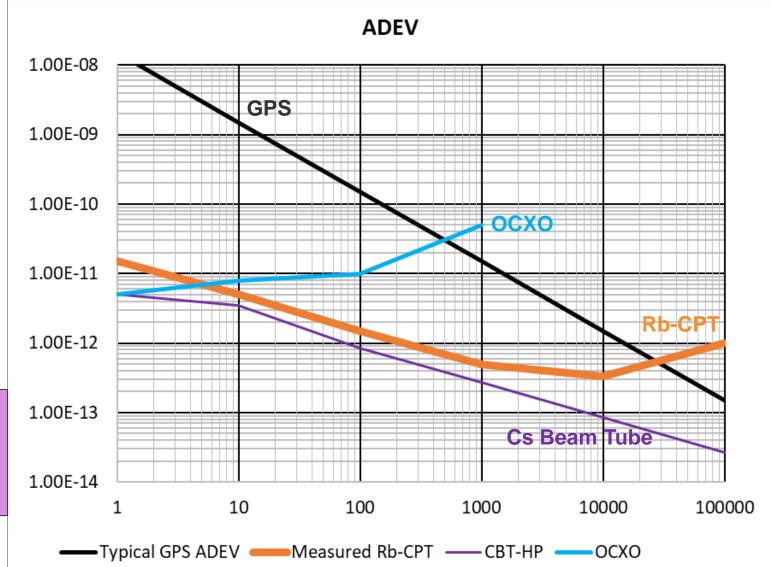
CPT Versus Lamp-based Clocks


g-sensitivity: 2g tip-over test

Shock: Rb-CPT clock Freq. excursions

- Three Rb-CPT samples
 - 30g & 50g shock
 - Profile: 11mS, Half Sine
 - 6 shocks/axis (3 + / 3 -)
 - Y-axis is most sensitive (~10x)

SN	Shock Level	Max excursion (ΔHz/Hz) X-axis	Max excursion (ΔHz/Hz) Y-axis	Max excursion (ΔHz/Hz) Z-axis
Sample 10	30g	1.68E-09	22.0E-09	1.35E-09
	50g	3.43E-09	36.9E-09	3.04E-09
Sample 18	30g	1.84E-09	17.5E-09	2.28E-09
	50g	2.28E-09	31.0E-09	3.37E-09
Sample 34	30g	1.61E-09	21.0E-09	1.85E-09
	50g	3.63E-09	34.9E-09	1.87E-09

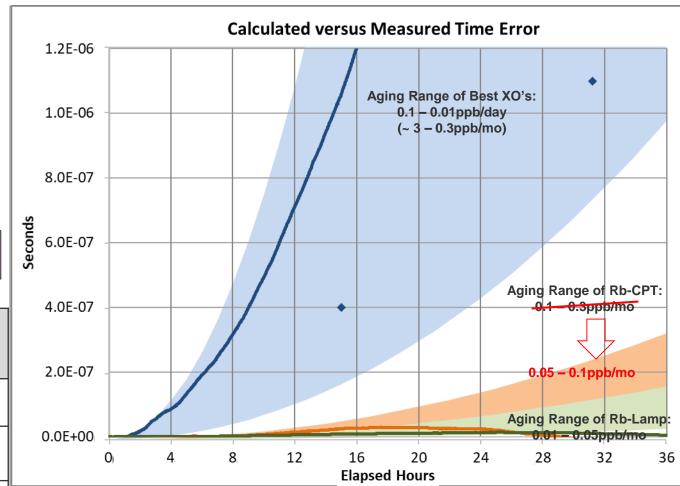

Frequency comes back after momentary shock perturbation

ADEV of various frequency references

- Generally OCXO has superior short term stability
- Rb has better mid to long term stability
 - Enabling better holdover for durations > several hours
- PLL featuring Rb and GPS approaches performance of a CBT

Enables longer duration between frequency recalibration

Agenda

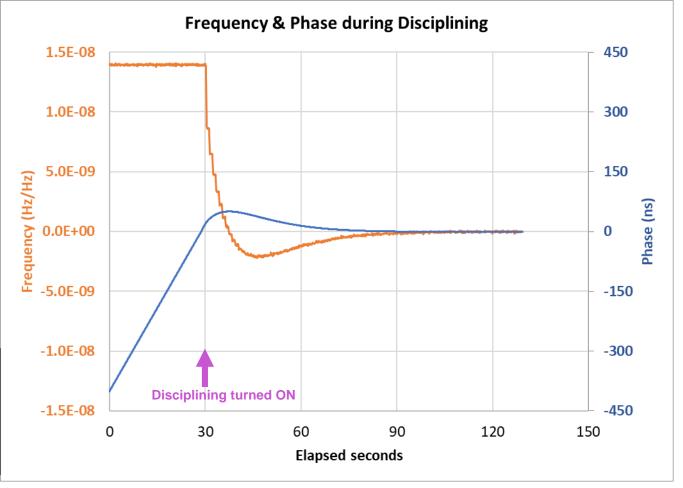

- Test & Measurement requirements and Oscillator options
 - Legacy and new options
- Reasons to consider Gas cell clocks
 - g-sensitivity, vibration/shock, drift performance data
- New Features/enhancements of Rb-CPT clocks
 - Drift, calibration, warm-up time, retrace, temperature sensitivity data

Aging, Time Error of various timing references

- Recent developments in Quartz have pushed performance toward Rb-CPT clocks
- Similarly, Next Gen Rb-CPT clocks have filled the performance gap between CPT and Lamp designs

Rb = Nanosecond Timing accuracy

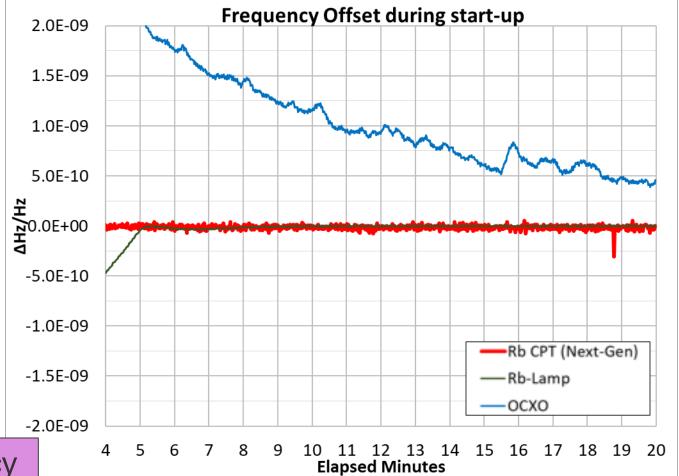
<u>Device</u>	<u>TE (ns)</u> <u>@ 8h</u>	<u>TE (ns)</u> <u>@ 16h</u>	<u>TE (ns)</u> <u>@ 24h</u>	<u>TE (ns)</u> <u>@ 36h</u>	
осхо	48 – 480	192 – 1,920	432 – 4,320	972 – 9,720	
Rb-CPT (Nex-Gen)	8 – 16	32 – 64	72 – 144 ns	162 – 324	
Rb-Lamp	1.6 – 8	6.4 – 32	14.4 – 72 ns	32.4 – 162	


Calculated based upon zero initial freq/phase error. No environmental perturbations.

Calibration: Rb-CPT allows 1PPS disciplining

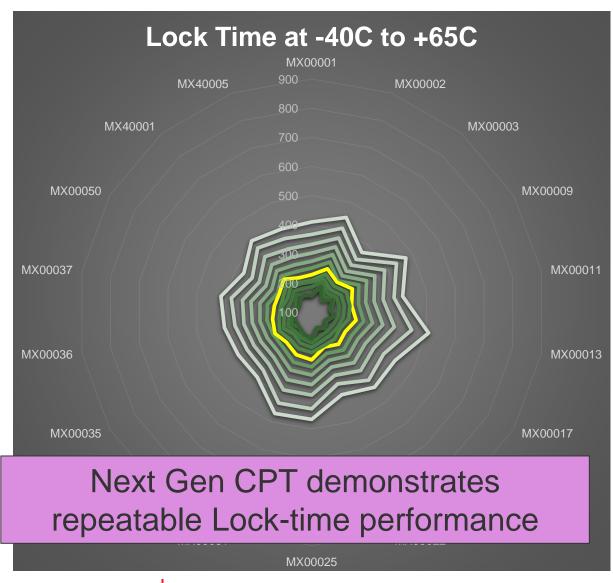
- Some oscillators allow an input 1PPS signal to correct the output frequency
 - If using a valid GPS, the clock can be steered to UTC (Minutes)
 - Generally there is a trade-off between size/cost with this added functionality
 - Embedded into a module or,
 - Included within modern CPT clocks

New PPS disciplining algorithms enable rapid frequency calibration = More test-time



Warm-up performance

- Rb clocks sweep their TCXO during Lock-acquisition.
 - User must wait until Lock is complete
- OCXO has the nice feature of having <5x10⁻⁸ accuracy within a few minutes of power-on.
- Now, Next Gen Rb-CPT clocks:
 - ~5x10⁻⁸ accuracy immediately after power-on
 - ±5x10⁻¹¹ accuracy within several minutes of power-on
 - Consistent Lock times

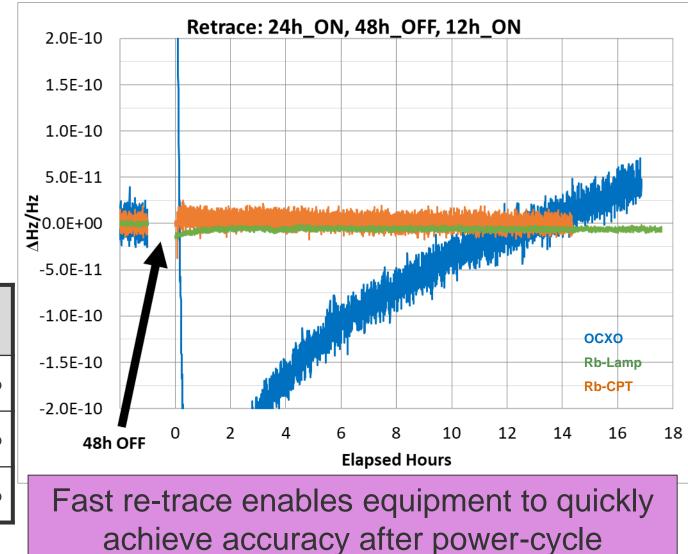

Next Gen CPT has a usable frequency immediately after power-on

It takes several days for OCXO's to reach the aging rates cited previously.

Warm-up (a closer look at the Rb-CPT clock)

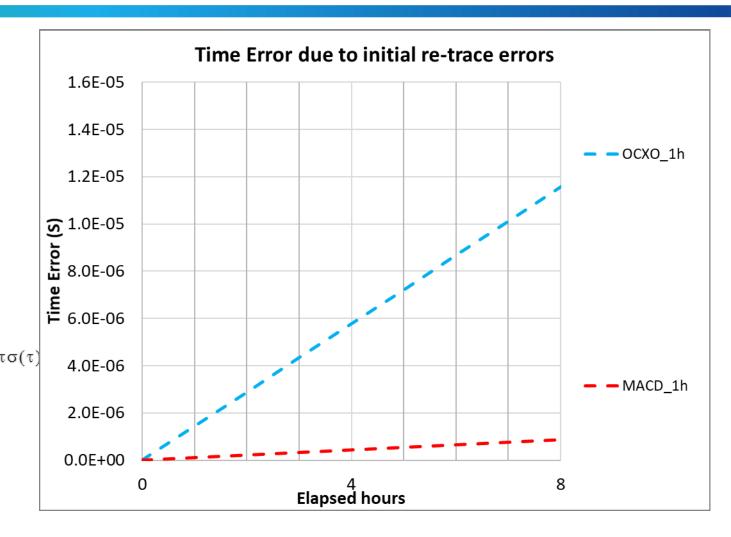
180 trials at 12 ambient temperature settings: All Lock within specification (< 6minutes from -10 to +65C)

Temperature	Attempts
-40 C	180
-30 C	180
-20 C	180
-10 C	180
0 C	180
+10 C	180
+20 C	180
+30 C	180
+40 C	180
+50 C	180
+60 C	180
+65 C	180

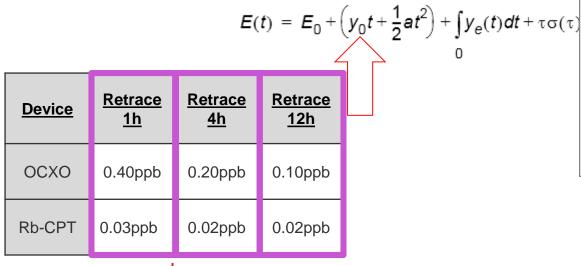

Microsemi. a Wicrochip company

FOUO – For Official Use Only

Retrace test


- 24h ON
 - (measure f_1)
- 48h OFF
- 12h ON
 - (measure f₂)
- Compute $\Delta f = f_2 f_1$
- Important for power-down app's

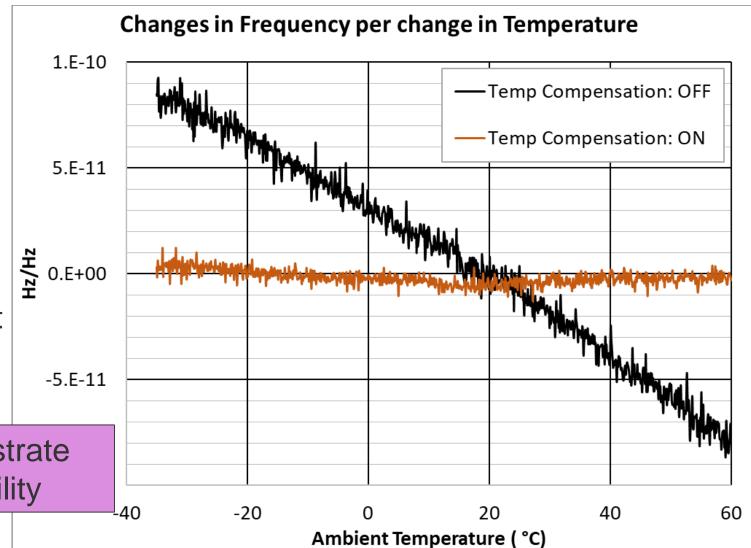
<u>Device</u>	<u>Retrace</u> <u>1h</u>	<u>Retrace</u> <u>2h</u>	<u>Retrace</u> <u>4h</u>	<u>Retrace</u> <u>8h</u>	<u>Retrace</u> <u>12h</u>	<u>Retrace</u> <u>Spec.</u>
OCXO	0.40ppb	0.30ppb	0.20ppb	0.10ppb	0.10ppb	±2.00ppb
Rb-CPT	0.03ppb	0.03ppb	0.02ppb	0.02ppb	0.02ppb	±0.05ppb
Rb-Lamp	0.02ppb	0.01ppb	0.01ppb	0.01ppb	0.01ppb	±0.03ppb



The consequences of poor re-trace: Growing Time Error

- Test set repeatability is effected by re-trace
- Time error of measurements taken 8 hours apart:
 - OCXO @ 8h = 3, 6, 12 us, depending on initial retrace offset
 - <u>Rb</u> @ 8h < 1 us, for all retrace offsets

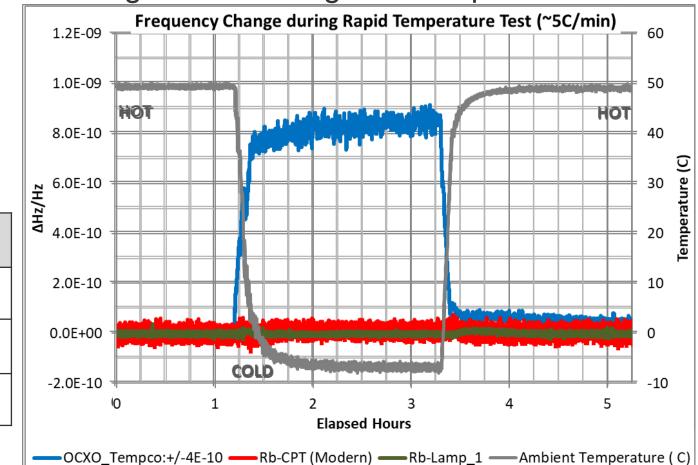
OCXO @ 8h = 3, 6, 12 us, depending on initial retrace offset Rb @ 8h < 1 us, for all retrace offsets


Microsemi a Microchip company

© 2019 Microsemi 17

Temperature Sensitivity

- Extra processing power in modern Rb allows for compensation of temperature effects
- TempCo can be improved ~10x
 - $\Delta f < \pm 1E-11$, for this unit
 - (-35 to +60C)
- Compensation is performed at the factory
 - Invisible to end-user


Next Gen CPT clocks demonstrate excellent Temperature Stability

Temperature Sensitivity: Extreme case

- Atomic clocks are especially good at resisting drastic changes in temperature
 - This test:
 - Rapidly cool 50 \rightarrow -5 °C in 15 minutes
 - Soak for 2 hours
 - Rapidly heat -5 \rightarrow 50 °C in 15 minutes
 - Soak for 2 hours

<u>Device</u>	<u>Measured</u> <u>Δfreq. (max)</u>	Specification	Specification Range
осхо	0.85ppb	±0.40ppb	0 to +70°C
Rb-CPT (Next-Gen)	0.18ppb	TBD	-40 to +75°C
Rb-Lamp	0.05ppb	0.60ppb	-25 to +70°C

Rb demonstrates ability to resist drastic temperature changes

What about Chip Scale Atomic Clocks?

						Chip Scale
 Chip Scale Atomic Clock 		осхо	Rb-Lamp	Rb-CPT	(Next-Gen) Rb-CPT	Atomic Clock
 Low Noise versions too 	Cost	\$	\$\$\$	\$\$\$	\$\$\$	\$\$\$\$
	Power (W)	3 to 4	10 to 18	5	6.5	0.12
Advantages:	Volume (cm ³)	15 to 20	200 to 500	50	50	17
Power/Size	<u>Warm-up time</u> :					
milliWatts	-Time to 5x10 ⁻⁸ (min's.)	3	5	15	7	4
	-Time to 1x10 ⁻¹⁰ (min's.)	n/a	12	15	7	3
 Dis- Advantages: Temp. Range Aging 	1PPS calibration	No	Yes	No	Yes	Yes
	Temperature range (°C)	-40 to +85	-10 to +75	-10 to +75	-40 to +75	-10 to +70
	<u>Stability</u> :					
Price Point	-TempCo (x10 ⁻⁹)	±0.8	<0.6	<0.1	<0.1	±0.5
	-ADEV @1s (x10 ⁻¹²)	5	10 to 30	30	20	30
	-Aging/month (x10 ⁻¹¹)	83	5	10	5	90
	-Retrace (x10 ⁻¹⁰)	20	0.2	0.5	0.5	5

Conclusions

- Electronics miniaturization and increased processing power has enabled improvements to temperature, stability and additional features
- Modern Rb-CPT clocks have leveraged these improvements to enable superior performance in mobile T&M applications
 - **FASTER CALIBRATIONS**: 1PPS Disciplining, warm-up time
 - LONGER TIME BETWEEN RE-CALIBRATIONS: mid / long-term stability, re-trace
 - SUITABLE FOR HAND-HELD'S: g-sensitivity, vibe
 - **SUITABLE FOR OUTDOOR USE**: excellent temperature stability
- Superior holdover stability enables more time with an accurate frequency / timing reference, enabling longer test-equipment run-time.