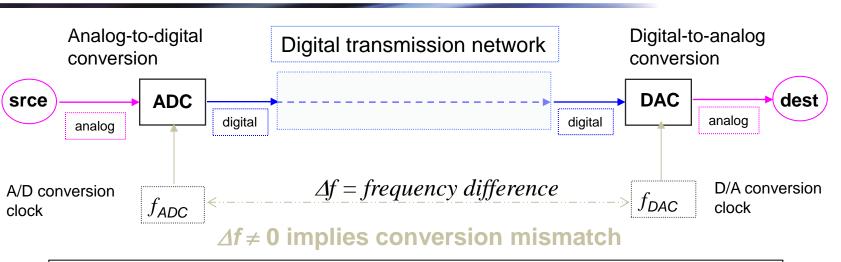


Clocks, Oscillators, and PLLs

An introduction to synchronization and timing in telecommunications


Kishan Shenoi CTO, Qulsar, LLC

WSTS – 2013, San Jose, April 16-18, 2013

Outline of Presentation

- Fundamental need for timing
- Clocks and Oscillators
- Synchronization and Syntonization
- Time Error, accuracy, stability, and metrics
 MTIE, TDEV and their implications
- The telecom synchronization network
 The BITS concept
- Telecom stratum levels
- Back-up slides (many)
- Special thanks to Dominik Schneuwly of OSA and Chip Webb of Ixia for providing slides from their (past) WSTS/ITSF presentations.

Timing Alignment in "analog" Transmission

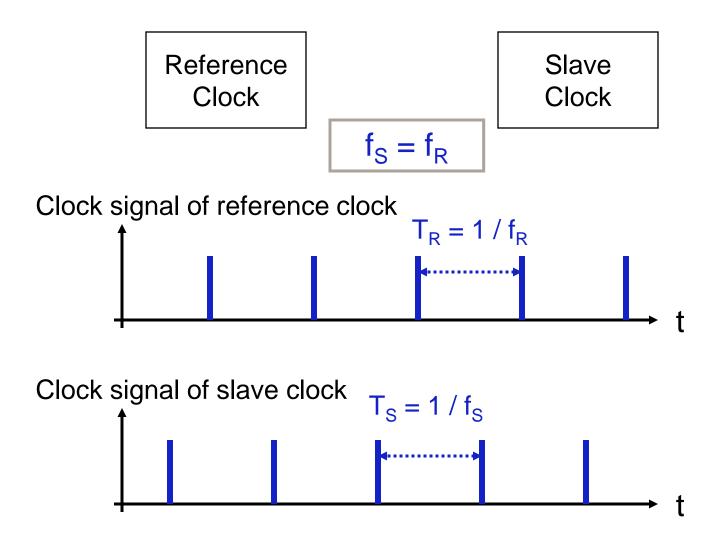
Primarily affects voice-band data (Fax, modem) and real-time video

Source/Destination : Voice/video/fax terminal

- The digital transmission network *emulates* an analog circuit (the original circuit emulation)
- Impact of frequency difference (Δf):
 - Eventually buffers will overflow/underflow (e.g. slips) ("obvious")
 - Pitch Modification Effect (PME) (analogous to *Doppler*) makes recovered symbol clock ≠ transmit symbol clock (not so "obvious")
 - ► Recovered waveform ≠ original waveform (more than just additive noise)

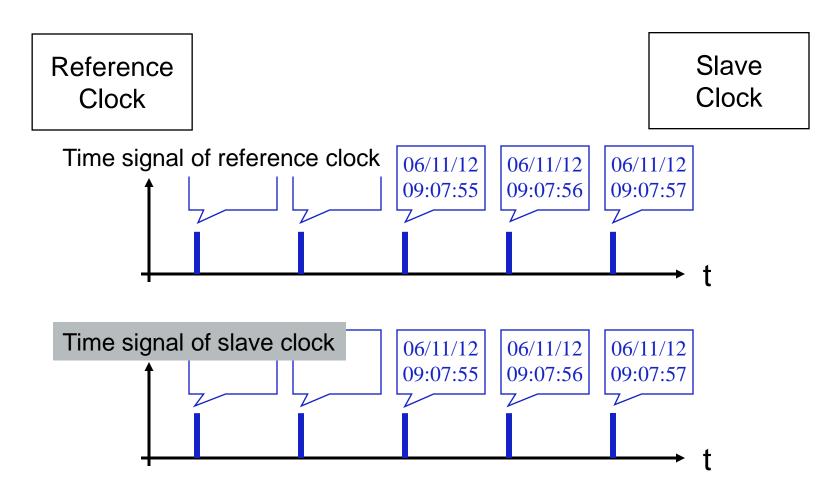
Clocks and Oscillators

- QULSAR
- Distinction is more in terms of emphasis
 - Both entities relate to time/frequency
 - Both entities have the notion of periodicity (time-base)
 - Both entities provide "edges", but
 - Clocks usually associated with edges (square waves) (digital)
 - Oscillators usually associated with waveforms (sine waves) (analog)

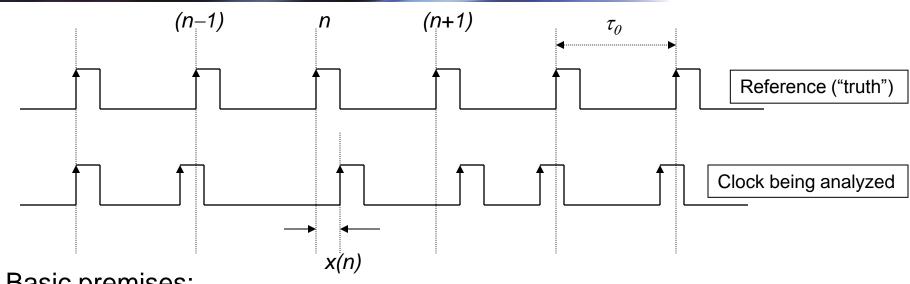

Clock:

- Emphasis is on time (time interval) accuracy
- There is the notion of calibration (traceability to UTC)
- A clock is a "disciplined" oscillator

Oscillator:


- Emphasis is on frequency stability
- Waveform integrity is important ("phase noise")
- Oscillators are components of clocks

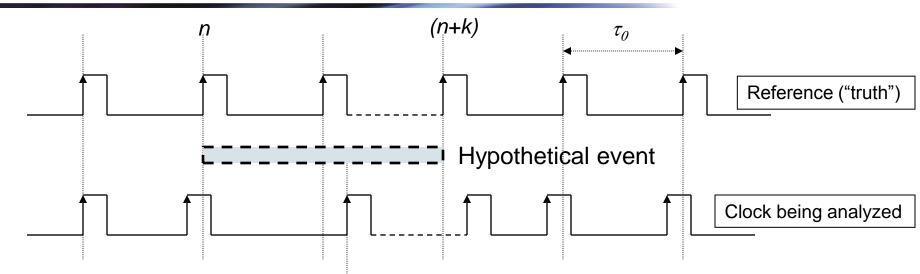
Frequency Synchronization (Syntonization) QULSAR


QULSAR

Time Synchronization

Time Error

QULSAR


Basic premises:

- Both the reference and clock being analyzed have same nominal period
- This nominal period may require that one (or both) are divided down
- The *nominal* value for *x(n)* is zero (or a constant)

The discrete-time signal $\{x(n)\}$ is the "Time Error" (TE) and is the basis for quantifying the performance of the clock (relative to reference) $\{x(n)\}\$ can be viewed as the samples of a (analog) signal, x(t), taken every τ_0 seconds (sampling rate = $f_0 = 1/\tau_0$)

Time Interval Error (TIE)

QULSAR

Hypothetical event:

- Starts at cycle "n" and ends at cycle "(n+k)"
- Nominal duration is $\tau = k \cdot \tau_0$ (k cycles)
- The *reference* measures this interval as $\tau = k \cdot \tau_0$
- The clock under test measures this interval as $\tau_{\alpha} = k \cdot \tau_0 + [x(n+k) x(n)]$

The discrete-time signal $\{w(n,k) = [x(n+k)-x(n)]\}$ is the "Time Interval Error" (*TIE*) and is the basis for quantifying the "frequency" performance of the clock (relative to reference); first difference removes any constant time (phase) error.

QULSAR

Clock/System Error Model

$$x(t) = x_0 + y_0 t + D \frac{t^2}{2} + \varepsilon(t)$$

Deterministic part:

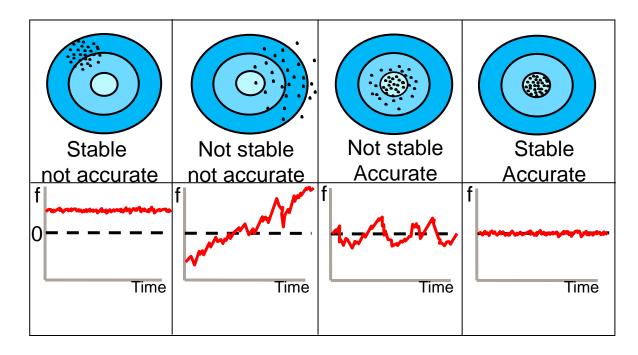
 x_0 = initial time offset ; y_0 = initial frequency offset ; D = linear frequency drift

Stochastic, or random part:

 $\varepsilon(t)$ = random process modeled as either white, flicker, or random walk in either phase or frequency (or a combination)

Five noise types:

- White Phase Modulation
- Flicker Phase Modulation
- Random Walk Phase Modulation = White Frequency Modulation
- Flicker Frequency Modulation
- Random Walk Frequency Modulation


Jitter and Wander : High and low frequency components of clock error

Arbitrary choice of split : 10Hz

QULSAR

Accuracy and Stability

- Accuracy: Maximum (freq., phase or time) error over the entire life of the clock
- Stability: (Freq., phase or time) <u>change</u> over a given observation time interval
 - Stability is expressed with some statistical dispersion metric as a function of observation interval (e.g. TDEV, MTIE, etc.)
- Metrics quantify how different time error (frequency error) is from ZERO.

MTIE

A measure of peak-to-peak excursion expected within a given interval, τ (τ is a parameter). The observation interval is scanned with a moving window of duration τ and MTIE(τ) is the maximum excursion.

Given a set of N observations {x(k); k=0,1,2,...,(N-1)} with underlying sampling interval τ_0 , let $\tau = n\tau_0$ ("window" = n samples; n = 1,2,...,N).

Peak-to-peak excursion over *n* samples starting with sample index *i* is:

$$peak-to-peak(i) = \{ \max_{k=i}^{k=i+n-1} x(k) - \min_{k=i}^{k=i+n-1} x(k) \}$$

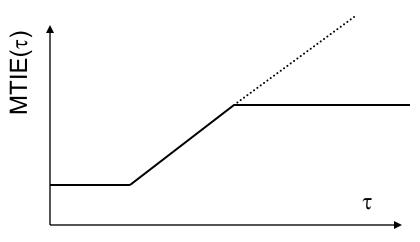
MTIE(n), or $MTIE(\tau)$, is the largest value of this peak-to-peak excursion:

$$MTIE(n) = \max_{i=0}^{N-n} \left\{ \max_{k=i}^{k=i+n-1} x(k) - \min_{k=i}^{k=i+n-1} x(k) \right\}$$

Statistics Associated with TIE: MTIE and TDEV

MTIE

MTIE is a useful indicator of the size of buffers and for predicting buffer overflows and underflows.


Write into buffer with clock A

Read out of buffer with clock B

Buffer size > MTIE(τ) implies that overflow/underflow unlikely in any interval < τ

Buffer

Buffer size = $MTIE(\tau)$ implies that overflow/underflow occurs approx. every τ seconds

Observations:

- \bullet monotonically increasing with τ
- linear increase indicates freq. offset
- for very small τ , MTIE(τ) related to jitter
- for medium $\tau, MTIE(\tau)$ related to wander
- for large τ, indicates whether "locked"

Statistics Associated with TIE: MTIE and TDEV

QULSAR

TDEV

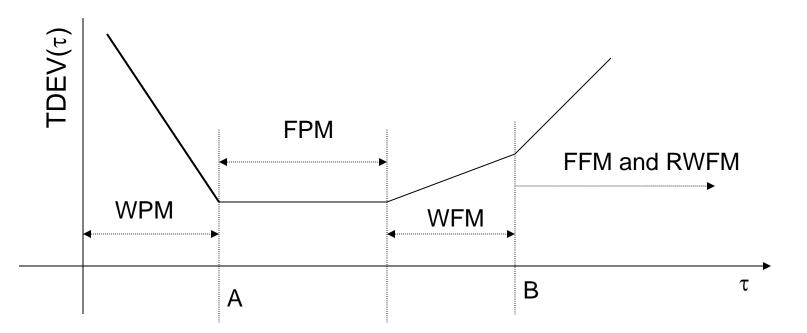
A measure of stability expected over a given observation interval, τ (τ is a parameter).

Given a set of N observations {x(k); k=0,1,2,...,(N-1)} with underlying sampling interval τ_0 , let $\tau = n\tau_0$ ("window" = n samples; n = 1,2,...,N).

$$\sigma_{x}(\tau) = TDEV(\tau) = \sqrt{\frac{1}{6n^{2}(N-3n+1)} \sum_{j=0}^{N-3n} \left[\sum_{i=j}^{n+j-1} (x_{i+2n} - 2x_{i+n} + x_{i}) \right]^{2}}$$

$$Conventional Definition$$

$$for n=1,2,..., \left\lfloor \frac{N}{3} \right\rfloor$$


$$Note: x(k) \Leftrightarrow x_{k}$$

TVAR = square of TDEV Modified Allan Variance (related to TDEV) :

$$\sigma_{y}(\tau) = \frac{\sqrt{3}}{\tau} \sigma_{x}(\tau)$$

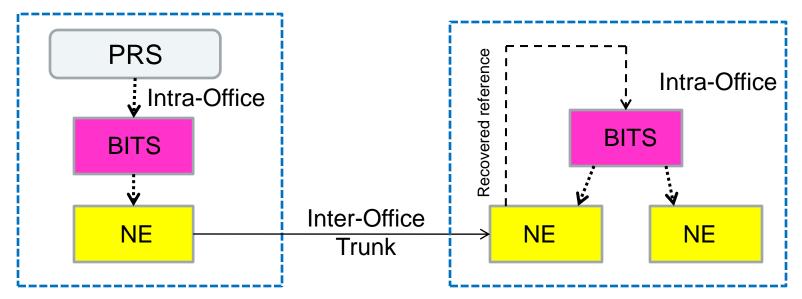
TDEV suppresses initial phase and frequency offset and quantifies the strength of the frequency drift and noise components

Implication of behavior of TDEV(τ) versus τ

"Phase coherence" for up to A sec. \Rightarrow Keep PLL time constants less than A sec.

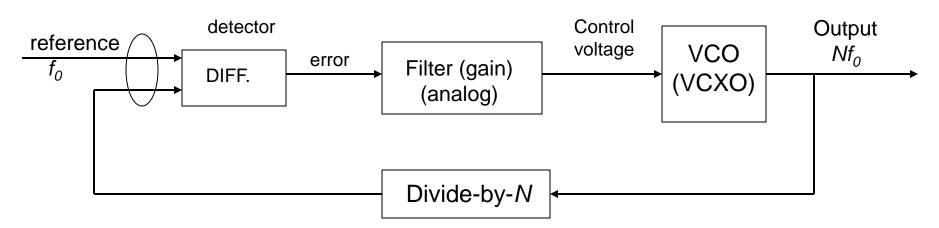
"Frequency coherence" for up to B sec. \Rightarrow Keep FLL time constants less than B sec.

Phase Flicker Floor


QULSAR

Frequency Flicker Floor

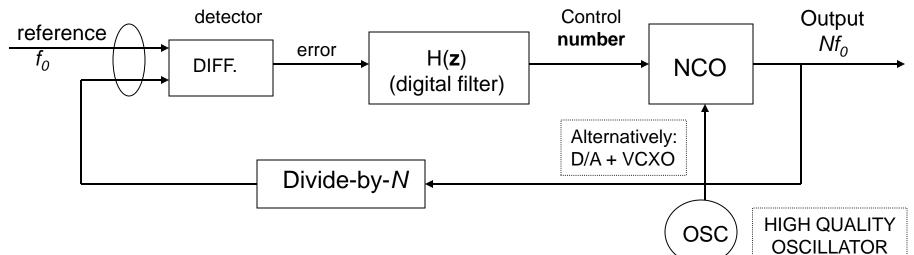
The Synchronization Network


- Synchronization distribution is best visualized as an overlay network
 - Traffic carrying transmission medium can carry a timing reference (DS1, SONET/SDH, SyncE)
- Each "node" (Central Office) has a main clock system (BITS or TSG) that provides timing to all the NEs in the office
 - The transmit out of all NEs is timed (effectively) by this signal
 - Must meet a tight mask ("sync" mask) for output signal
- Recovered clock from (usually two) incoming trunks is provided as a reference to the BITS
 - The BITS has a stratum level (ST2E, ST2, ST3E)
 - Defines the holdover performance
 - Narrow-bandwidth filtering (bandwidth <~mHz) removes significant amount of wander
- SDH/SONET (and SyncE) equipment may have their own clock subsystem (aka SEC/EEC) and not use a BITS/SSU reference
- SSM (Synchronization Status Messaging) used to identify the trail and avoid evil timing loops

Timing distribution : PRC/PRS, QULSAR BITS, NE

- PRS: Primary Reference Source provides stratum-1 quality output signal
 - Cesium Atomic Reference or GPS-receiver with high-quality oscillator (Rb or OCXO)
 - Aka PRC or Primary Reference Clock (ITU-T terminology)
- BITS: Building Integrated Timing Supply (also TSG Timing Sig. Gen.)
 - Provides clock reference to the different NEs in the CO (DS1/E1 most common formats)
 - Accepts a reference input and performs clock-noise filtering (removes jitter/wander) (PLL/FLL)
 - Provides HOLDOVER in case of reference failure
- NE: Network Element (e.g. SONET)
 - Recovers clock from incoming signal and provides a reference for the BITS (DS1/E1 format)
 - Accepts reference input (BITS or recovered clock) and generates transmit clock (PLL)

Phase-Locked and Frequency-Locked Loops - Analog



QULSAR

Method for generating Nf_0 from f_0 :

- Detector determines loop type:
 - phase detector generates phase difference for a phase-locked-loop (PLL)
 - frequency detector provides frequency difference for a frequency-locked-loop (FLL)
- Since loop gain is not "infinite":
 - PLLs may have a residual phase offset
 - FLLs may have a residual frequency offset
- In analog implementations, filter time constants limited to the order of milliseconds
- Handling periods of time when reference "goes away" can be problemmatic
- Generally used to generate special output frequencies with "low phase noise"

Phase-Locked and Frequency-Locked Loops - Digital

QULSAR

Method for generating Nf_0 from f_0 :

- Detector determines loop type (PLL/FLL)
- In digital implementations, filter time constants can be seconds/hours/days
- Periods of time when reference "goes away" can be handled appropriately:
 - detect "absence" or invalidity of reference
 - hold frequency control number constant at last known good value (holdover)
 - does not "hiccup" when reference comes back (smooth transition out of *holdover*)
 - behaviour during holdover directly related to quality of oscillator
- Generally used to generate a "local reference" to feed other PLLs/FLLs

Analytical Model of Locked Loop

{e₁(n)} {e₀(*n*)} H(z)(LPF) $(1-z^{-1})$ (jitter in reference) (jitter in output) (1/N) $\{e_2(n)\}$ (jitter in oscillator) (for illustration only) High-freq. jitter in output |H(f)|depends on the oscillator. Low-freq. jitter (wander) depends on the reference. Transfer characteristic, e_2 to e_0 Narrow-band (LPF) implies a long time-constant. Transfer characteristic, e_1 to e_0 How large time-constant can ٠ be is governed by $TDEV(\tau)$ of oscillator and reference (flicker floor) f (jitter frequency)

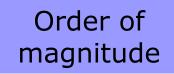
Frequency generation: **comparison** between XO, Rb & Cs

	OCXO	Rb	Cs
Fractional Frequency Drift	5·10 ⁻¹² /day to 2·10 ⁻⁹ /day	4·10 ⁻¹¹ /month to 3·10 ⁻¹⁰ /month	0
Fractional Frequency Accuracy	-	-	1.10 ⁻¹² to 5.10 ⁻¹³
Temperature Sensitivity	7·10 ⁻¹³ /°C to 5·10 ⁻¹⁰ /°C	1·10 ⁻¹² /°C to 1·10 ⁻¹¹ /°C	1·10 ⁻¹³ /°C to 1·10 ⁻¹⁴ /°C

Telecom Stratum Levels

Represents the intrinsic accuracy of a clock

- Stratum-1: 1x10⁻¹¹ (one part in 10¹¹)
- Stratum-2: 1.6x10⁻⁸ (16 parts per billion, ppb)
- ► Stratum-3: 4.6x10⁻⁶ (4.6 parts per million, ppm)
- ► Stratum-4: 32x10⁻⁶ (32 parts per million, ppm)


Implication:

output frequency is <u>always</u> accurate to xxx even if the reference fails and the clock goes into an autonomous mode of operation

Normal operation:

output frequency as accurate as the reference frequency (locked condition) – maintain a hierarchy in any chain of clocks (why?)

- Time-constant achievable:
 - ST2of the order of 10^5 sec (bandwidth $\sim \mu$ Hz)ST3Eof the order of 10^3 sec (bandwidth $\sim m$ Hz)ST3of the order of 10 sec (bandwidth \sim Hz)
 - ST4 of the order of 1 sec (bandwidth ~10Hz)

Questions?

Kishan Shenoi CTO, Qulsar, LLC kshenoi@qulsar.com

Back-up Slides follow

Special thanks to Dominik Schneuwly of OSA and Chip Webb of Ixia/Anue for permission to include slides from prior WSTS/ITSF and other presentations Unit for time : "second" (and different scales such as milli-, micro-, etc.) Time-standard: 1 second is the duration of 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine levels of the CS-133 atom.

Unit for frequency : "Hz" (Hertz) ; measure of periodicity as in "periods/sec"

Units for time interval (error) :

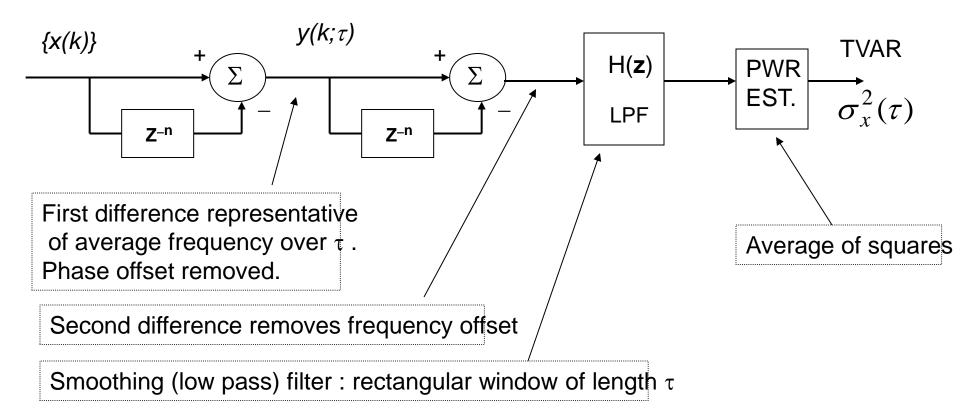
x seconds ("absolute")

- *y* Unit Intervals : $y = x/T_s$ (notion of "fractional" frequency)
- θ Radians : $\theta = 2\pi y$ (relationship of "time" and "phase")

Notion of (instantaneous) frequency : derivative (or first difference) of phase with respect to time

$$y(t,\tau) = \frac{x(t+\tau) - x(t)}{\tau} = \text{"average" (fractional) frequency difference} \\ \text{over the time interval } \tau$$

Spectral Representation of Time Error


Based on the Discrete-Time Fourier Transform (**DTFT**):

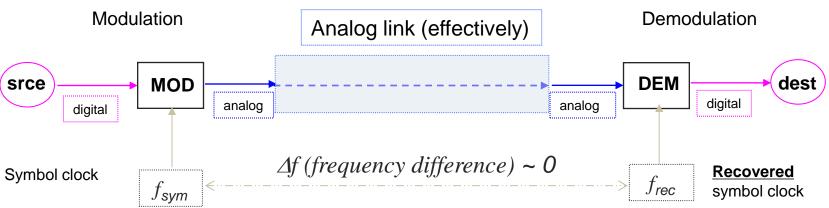
$$X(f) = \sum_{n} x(n)e^{-j2\pi fT_s} = \sum_{n} x(n)e^{-j2\pi \left(\frac{f}{f_s}\right)}$$

f < 10 Hz : "wander" ; f > 10 Hz : "jitter" (sampling rate = clock rate ~ kHz+)

Interpretation of TDEV and TVAR

- Jitter
 - Generally associated with "short-term" effects
 - Commonly associated with phase fluctuations
 - Inherent in all clock-recovery mechanisms
 - Usually can be filtered out using PLLs and thus considered "benign"
 - Excessive jitter can cause clock-recovery malfunctions
- Wander
 - Considered more in terms of "long-term" effects
 - Manifests itself as (short-term) frequency offset
 - Cannot be "filtered" by common PLLs
 - Determining factor in the size of buffers and "pointer adjustments"

Jitter and wander are both ways of looking at any angle modulation present (either PM or FM).


QULSAR

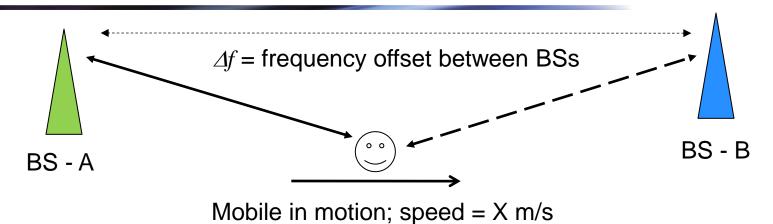
TDEV for different noise types

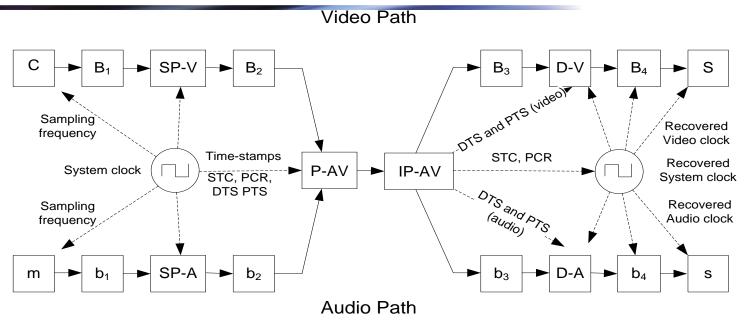
Noise Process	Dependence of TDEV(τ) on τ
White PM	$\tau^{-(1/2)}$
Flicker PM	$ au^0$
Random Walk PM = White FM	
Flicker FM	τ^{+1}
Random Walk FM	$\tau^{+(3/2)}$

When linear frequency drift dominates, TDEV(τ) behaves as τ^2

Binary data transmission schemes use modems

- Source/Destination : modulator and demodulator
- Transmitter (modulator) uses a particular symbol clock
 - receiver (demodulator) must extract this clock (Af ~ 0) for proper data recovery
- The "Analog link" must, effectively, mimic an analog wire pair
 - ► Frequency translation (e.g. DSB-AM) is benign, Doppler (pitch modification effect, PME) is not benign (△f ~ Doppler)


Timing alignment implicit in Circuit Emulation

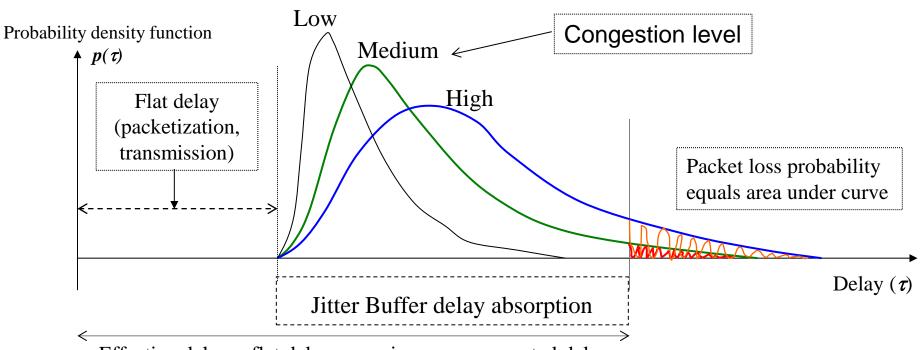

- Network impairments: delay, <u>packet-delay-variation (PDV)</u>, discarded packets
- Jitter buffer size: large enough to accommodate greatest (expected) packet-delay-variation. Packet loss concealment is not an option.
- Causes of packet "loss":
 - Network drops packets (bit errors, congestion)
 - Jitter buffer empty/full (excessive packet-delay-variation)
- Key to <u>Circuit Emulation</u>:
 - Ensure packet loss is (essentially) zero.
 - Make RX and TX service clocks "equal".
 - Note: If RX ≠ TX then jitter buffer is going to overflow/underflow

Timing Alignment in Wireless QULSAR

- Mobile in motion (X m/s) introduces a Doppler shift (X/c)
- When hand-over occurs, the mobile must reacquire carrier frequency
- Loop bandwidth wide enough to handle (∆f + X/c +LO) (LO = local oscillator offset)
- Loop bandwidth should be small from a noise rejection viewpoint
- ► Large Δf compromises the reliability of hand-over

Timing Alignment in Multimedia

- Frequency offset (wander) between audio and video sampling results in loss of lip-sync
- Frequency offset (wander) between send-side and receive-side system clock results in freeze (video), breaks (audio), and possible loss of lip-sync


Timing in TDM Networks

- Synchronization is essential for synchronous multiplexing
 - To avoid information loss
- Synchronous multiplexing assemblies are used as carriers of timing information (DS1/E1, SONET/SDH)
 - The recovered clock is used as a reference for the BITS
 - The transmit signals must meet the "sync" mask for timing information
- Asynchronous multiplexing can preserve timing (up to a point) if done correctly
- Bearer signals (DS1/E1) in asynchronously multiplexed assemblies (e.g. DS1 in DS3) can be used as carriers of timing
 Asynchronous multiplexing is done correctly
- DS1/E1 bearer signals in SONET/SDH are <u>not</u> suitable as carriers of (good) timing
 - SONET/SDH encapsulation of DS1/E1 was done in a way that protects data but not (good) timing information

Timing Issues in Next Generation QULSAR Networks

- Next generation networks are based on packet switching as opposed to circuit-switched (i.e. based on TDM)
- Significant impact of variable delay (packet delay variation)
- Timing requirements remain. Going "IP" does not mean that real-time services no longer need synchronization!
- Transition Phase:
 - Hybrid Networks (IP/TDM islands)
 - Circuit Emulation
- Timing over Packet Networks (packet-based methods)
 PTP, NTP, adaptive clock recovery
- The testing challenge
 - Metrics for packet-based timing methods (quantifying PDV)

Impact of Packet Delay Variation – VoIP example

QULSAR

Effective delay = flat delay + maximum compensated delay

- Jitter buffer size: trade-off between latency and packet loss
 - Minimize latency (delay) for voice calls
 - Minimize packet loss for data (voice-band modem) calls
- "Adaptive" jitter buffer techniques adjust buffer size to match time-delay-variation
 - Introduce delay for "faster" packets
 - Frequency offset (wander) is a problem

Principles of Packet-based timing QULSAR methods

• One exchange of packets (M-to-S and S-to-M) provides 4 time-stamps

– Master knows t_1 and t_4 ; Slave knows τ_2 and τ_3

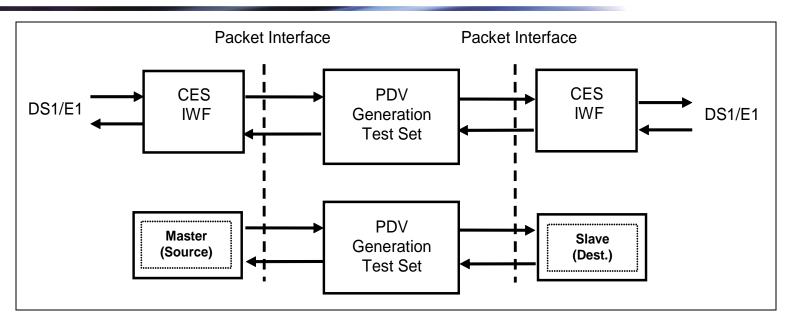
- t_x is correct time (master); τ_x is the slave's idea of time (error of ε)
- Assumption: transit time from master-to-slave (Δ_{MS}) is equal to the transit time from slave-to-master (Δ_{SM})
- "Errors" arise because the transit time is not the same from packet to packet (packet delay variation) and the path is not reciprocal ($\Delta_{SM} \neq \Delta_{MS}$)

PTP and NTP

- Similar in principle, differences in details
 - Both use 4 time-stamps (basic two-way-time-transfer principle is <u>common</u> to both)
- Standards:
 - NTP: developed by IETF (RFC 5905) (now V4)
 - PTP: developed by IEEE : IEEE-1588-V2 geared to telecom req.
- Origins:
 - NTP developed to provide time-of-day to PCs, workstations, etc., over the big bad Internet
 - PTP developed to provide alignment of robots on a manufacturing floor

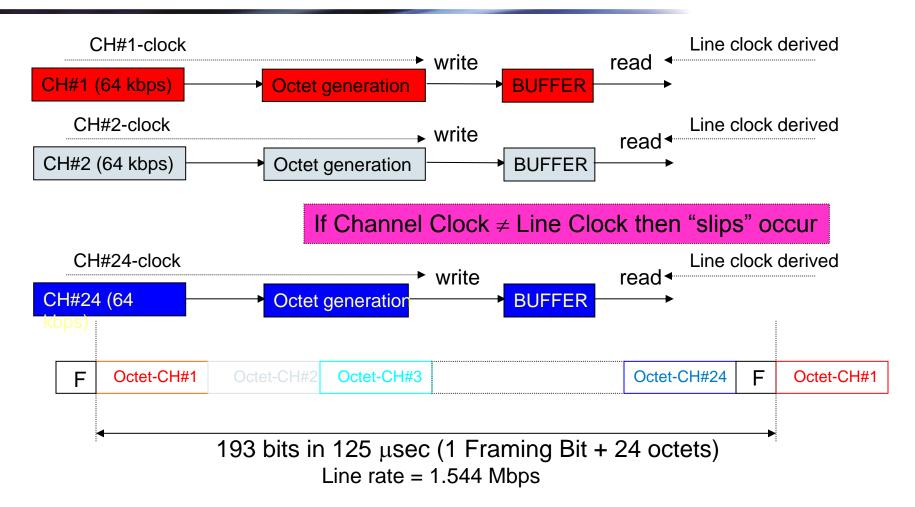
Source and Sink:

- PTP: each "slave" has one "master" (one master per community)
- NTP: each "client" can query multiple "servers" and do some fancy averaging (the "community" is not well defined)

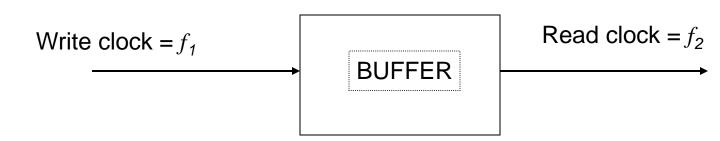

PDV Metrics

- Metrics that quantify PDV and share light on the ability of slave clocks to properly recover timing (phase and/or frequency)
- General background principles:
 - Not every packet has "good" timing information. Excess PDV is best ignored ("packet selection").
 - For a given path, the floor delay is not load dependent though large PDV may make it "unobservable".
 - Metrics often characterize the "floor behavior", quantifying:
 - Amplitude distribution (pdf) of the PDV to indicate the number of packets that are near the floor
 - the temporal/spectral characteristics of the PDV associated with these packets (xTDEV)

Testing Packet-based Timing


- Packet networks are inherently hostile to timing transfer
 - Packet loss
 - Packet delay variation
 - Asymmetry
- Testing Issues:
 - No two routers are "equivalent"
 - Load behavior is statistical
 - Repeatability of tests
- Repeatable Approach:
 - Simulate/emulate a network with well-defined anomalies
- Given a particular signal processing scheme (compression, PLC, etc.), the network can only degrade QoE (never improve it). The key network properties are:
 - Packet loss profile (error rate, distribution, etc.) (and excess PDV)
 - Packet delay variation (timing)

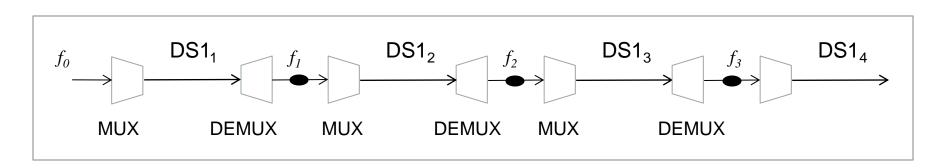
Why Network Emulation?


- Alternative set-up for assessing performance of CES IWF or timing_over_packet
- Requires PDV Generation Test Set
- PDV Generation Test Set adds *pre-computed* delay to each packet
- Eliminates uncertainty of switch pedigree
- Permits "repeatable" testing and independent verification
- Suitable for standardization purposes

Synchronous Multiplexing (DS1) QULSAR

Switching machines such as DACS have multiple DS1s (input). Office clock (BITS) used to generate outputs.

Notion of a "slip" (clock domain QULSAR boundary)


If $f_1 > f_2$ then we get overflows; if $f_1 < f_2$ then we get underflows Slip rate determined by size of buffer and frequency difference

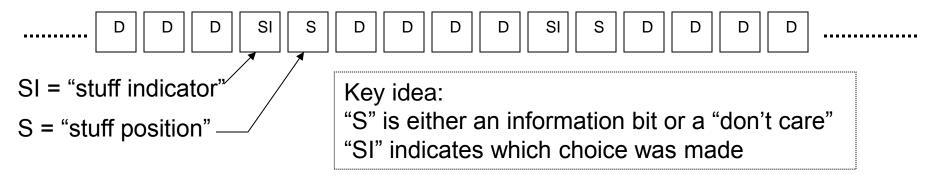
"Typical" buffer size = 125 μ sec (<u>1 frame</u> in DS1/E1 – one octet in each DS0 is affected)

Δf	Slip rate	Stratum level
32x10 ⁻⁶ (32 ppm)	1 in 4 sec.	4
4.6x10 ⁻⁶ (4.6 ppm)	1 in 27 sec.	3 (3E)
1.6x10 ⁻⁸ (16 ppb)	1 in 8000 sec.	2
1x10 ⁻¹¹ ("0")	1 in 12.5x10 ⁶ sec.	1

Controlled slips are bad – uncontrolled slips are catastrophic

Slips can accumulate

- Each cross-connection/switching node introduces a demultiplex-multiplex operation with slip-buffer
- Each Central Office is a (potential) clock boundary
- ► Slips occur if $f_i \neq f_{(i+1)}$
 - end-points could be OK, but slips could occur in the middle!
- ITU-T Rec. G.822 : less than 5 slips in a 24hr period
 - in an end-to-end 64 kbit/s hypothetical reference connection
 - If <u>only one</u> slip buffer then ∆f < ~5ppb</p>
 - ▶ Basis for requiring G.811 (PRC) traceability $[\Delta f < \sim 2x10^{-11}]$
- Impact of slips more severe for voice-band data (modems) than human-human speech


Intent: Multiplex *N* tributaries, each with nominal bit-rate f_L into a single stream with nominal bit-rate $f_H = Nf_L + \Delta$.

QULSAR

Function of \varDelta (over-speed): provide over-head bits for the following -

- Framing bits : to identify which bit positions correspond to which tributary
- Other overhead for management purposes
- · Stuffing positions and stuffing indicators for each tributary

Bit positions in high-speed stream for tributary #k (nominal rate = $f_{LH} > f_L$)

Effect of "stealing" 2 out of 6 bit-positions: $(5/6)f_{LH} \ge f_L \ge (4/6)f_{LH}$

SONET/SDH : Sync and Async QULSAR multiplexing

- STS-N created by interleaving N STS-1s; STM-N created by interleaving N STM-1s
 - STS-1s (STM-1s) must be synchronized (zero frequency offset between constituent channels and assembly)
 - Constituents channels of STS-1 are synchronous to STS1 ("containers")
- Bearer channels encapsulated into "containers".
 - e.g. VT1.5 is a container for a DS1 (1.544 Mbit/s signal)
 - ► The synchronizer function for DS1 → VT1.5 employs "positive-zeronegative stuffing"

Synchronizer function differences

- PDH uses "positive stuffing". Clock noise introduced is high-frequency (jitter) and can be filtered out
- SONET/SDH use "positive-zero-negative" stuffing that can introduce lowfrequency (wander) components
- DS1-bearer in PDH can be used as a synchronization reference; DS1bearer in SONET is not used as a synchronization reference
- SONET/SDH synchronization reference carried in line clock

Standards Bodies, Workshops, Forums

 ITU-T – International Telecommunication Union – Telecom Sector (United Nations)

- ATIS Alliance for Telecommunications Industry Solutions
- ETSI European Telecommunications Standards Institute
- IEEE Institute of Electrical and Electronics Engineers
- Telcordia Formerly BellCore
- IETF Internet Engineering Task Force
 TICTOC Timing over IP Connection and Transfer of Clock
- Relevant Workshops/Forums:
 - NIST National Institute of Standards and Technology (annual Workshop on Synch. In Telecom. Systems, WSTS is co-sponsored by Telcordia, ATIS, and IEEE)
 - ITSF International Telecom Synchronization Forum

Synchronization in TDM Networks QULSAR – Key Points

- Delivery of information can be compromised by absence of synchronization
 - Especially true for "analog" and CBR signals
- Synchronous multiplexing requires that bearer channels and assembly be synchronized
 - Rate adaptation in DS1/E1 achieved by slip buffers; ∆f ≠ 0 leads to data corruption
 - SONET/SDH also use synchronous multiplexing to get the higher bit-rates
- Asynchronous multiplexing requires that the bearer channel be rateadapted (bit stuffing) to channel rate
 - Positive stuffing introduces high-frequency noise (jitter) (PDH)
 - Positive-zero-negative stuffing introduces wander (SDH)
 - Bearer channel clock noise is sum of stuffing noise (filtered) and assembly clock noise
- SONET/SDH bearer signals not suitable as synchronization reference
 - Derived DS1/E1 based on optical line-clock used as a synchronization reference

Timing Considerations — Packet

- Real-time services require timing (frequency) at conversion points (e.g. A/D and D/A converters; C-to-P conversion points) (regardless of transport mechanisms)
 - Future requirements may include both frequency and time ("time of day")

- Packet Networks may not require timing (frequency) to maintain transport data integrity.....
 - Data transfer is bursty, with "gaps" and time-delay variation
 - Frequency offset "absorbed" by jitter buffers; errors caused by overflow/underflow
 - Buffers can be made large (with a latency penalty)
 - Delivery of sync reference to the end-points, for supporting real-time services, is still required and just may be "natural" as in TDM
 - How does an IAD fed by Ethernet get its synch. reference? (SyncE!)
 - Common <u>misconception</u> that since transport does not require it, timing is "not necessary" (overlooking requirement of service)

Timing Considerations — TDM

- Supporting real-time <u>services</u> require timing (frequency) at the conversion points (e.g. A/D and D/A converters) (<u>regardless</u> of transport mechanisms)
 - Future requirements may include both frequency and time ("Time-of-Day")
- Circuit Switched Network ("TDM") requires timing (frequency) in order to maintain <u>transport</u> data integrity
 - Transmitted signal is "continuous"
 - Frequency offsets "absorbed" by slip buffers (<u>not error free</u>)
 - Recovered clock from physical layer can be a timing reference
 - Delivery of timing reference to the end-points is straightforward
 - e.g. DS1 IADs can use loop-timing, deriving timing from the network by using the DS1 recovered clock as a reference**
 - Synchronizing the transport network indirectly provides the timing required to support real-time services

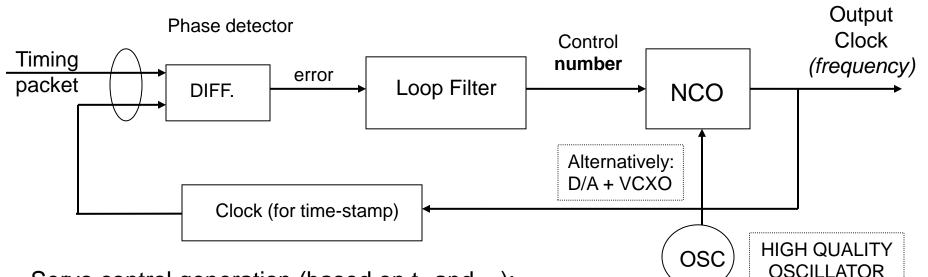
**: Very Important

Circuit Emulation

- Principles of Circuit Emulation. What is it?
 - Circuit Emulation refers to packet-based techniques that "mimic" circuit-switched implementations. This implies:
 - Bit integrity. No loss of "information".
 - Bit-time integrity. Meeting specifications of frequency transfer, jitter, and wander.
 - Meeting "legacy" specifications at the interface points.
 - Keeping transmission delay (latency) as low as possible.
 - This is often overlooked!
- Summary of clock recovery approaches given in ITU-T Rec. G.8261
 - Network Synchronous ("retimer")
 - Differential Methods
 - Adaptive Methods
 - Loop Timing (The "null" case)

Network synchronous and differential methods require a "network clock" reference. Best obtained by PTP/NTP (or physical layer)

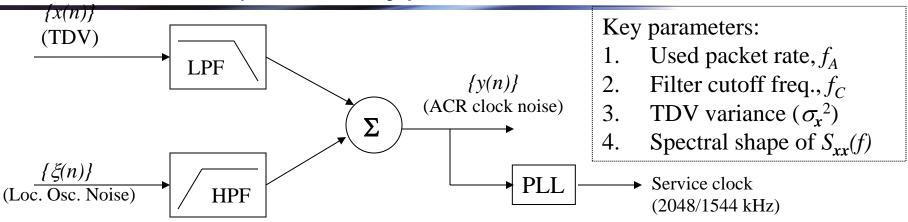
Recap – Timing in NGN


- Going "IP" does not mean that real-time services no longer need synchronization!
 Timing requirements based on Transport <u>and</u> Service
- Transition Phase Hybrid Networks
 Increased delay brings its own issues (e.g. echo)
 - Circuit Emulation
- Timing over Packet Networks
 - Two-way time transfer
 - PTP and NTP
- Packet Delay Variation and Metrics
- Testing Issues

PTP and NTP – some distinctions

- Different notion of "Time 0"
- Different formats for time-stamps
 - ▶ PTP limit : 2⁻³² s (tenths of nanoseconds)
 - NTP limit : picoseconds
- Initiator:
 - NTP: client initiates interaction. Request to Server who replies.
 - S-M Query; M-S Response
 - PTP: Master speaks (twice!), Slave listens and occasionally asks a question and Master responds.

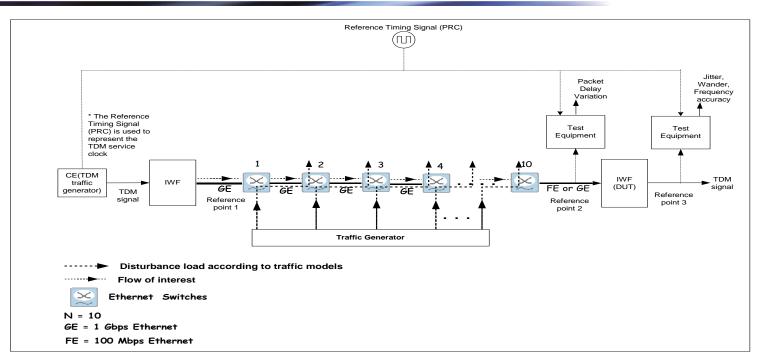
- M-S Sync and Follow-up; S-M delay-request and M-S delay-response
- PTP has the notion of on-path support aka transparent clocks and boundary clocks
- PTP community of clocks may have to decide who is Master (*aka Best Master Algorithm*)
- Different (artificial) limits on packet rate


Timing over packet – frequency QULSAR (one-way)

Servo control generation (based on t_1 and τ_2):

- 1. Time-stamp for time-of-arrival based on local clock
- 2. Time-stamp for time-of-departure based on master (source) clock and is present in the packet or follow-up or implied
- 3. Difference in time-stamps <u>should (ideally) be a constant (this</u> concept used for servo control)
 - 1. Local clock error (frequency offset) contributes to difference (we are trying to correct this)
 - 2. Variation in transit delay (packet delay variation) contributes to difference (this is extraneous noise and deleterious)
- 4. Alternatively use other direction (based on t_4 and τ_3)

Timing over packet – frequency QULSAR (one-way)



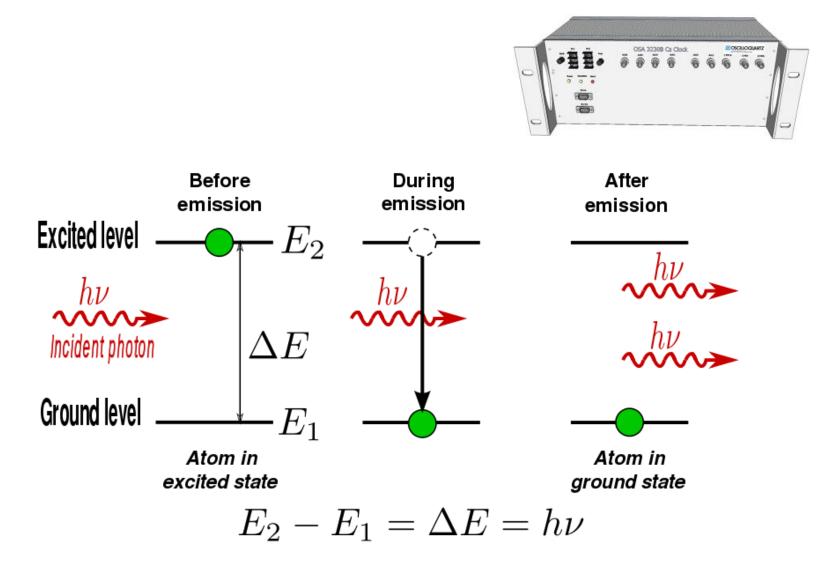
- Clock Recovery utilizes a phase/frequency locked loop to smooth out (low-pass filter) the time-delay-variation in <u>used</u> packet rate (f_A)
 - Commonly referred to as Adaptive Clock Recovery
 - Second PLL used to generate the actual service clock rate (e.g. 1544kHz)
- Recovered clock noise variance (wander) directly proportional to TDV variance (as seen by the phase locked loop!)
- Most benign case: time delay variation has a flat spectrum ("white phase noise")
- The loop appears as:
 - low-pass filter to the "reference clock noise" (time-delay variation associated with the used packets) [impacts wander]
 - high-pass filter to clock noise associated with the local oscillator [impacts jitter]

General requirements for packetbased metrics

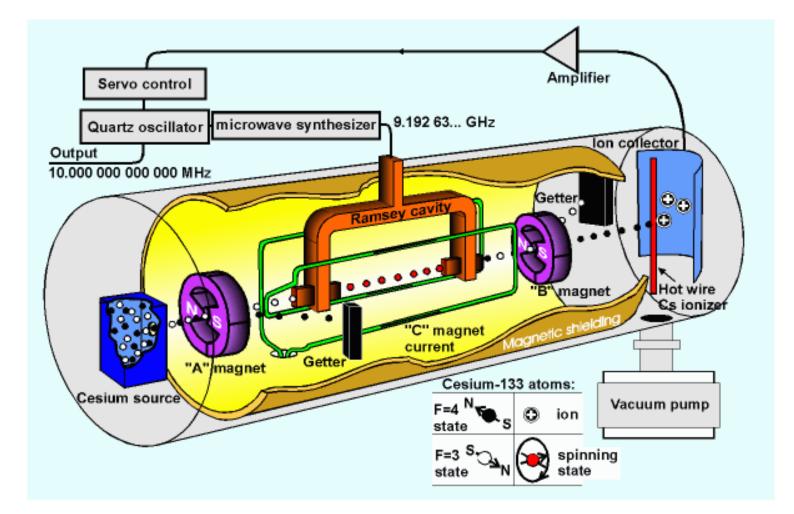
- The basic parameter is the packet delay variation (PDV)
 - Equivalent to "time error"
 - ITU-T Rec. Y.1540 provides definitions for packet delay variation
- Some processing of the PDV data is needed to get a proper interpretation of the packet network behaviour (metrics)
- Different metrics may be defined and these may have some relationship with hypothetical clock-recovery algorithms (e.g. packet selection)
- Traditional IP network metric (i.e. peak-to-peak jitter) is generally inadequate
- Metrics considered and still under consideration:
 - MTIE, TDEV (traditional clock metrics still in use)
 - minTDEV, clusterTDEV, percentileTDEV, bandTDEV (other members of the TDEV family) (different packet selection methods)
 - MATIE, MAFE (variations of MTIE) (including averaging in MTIE)
 - Probability density function (pdf) and its Fourier transform
 - And many more to come

Why Network Emulation?

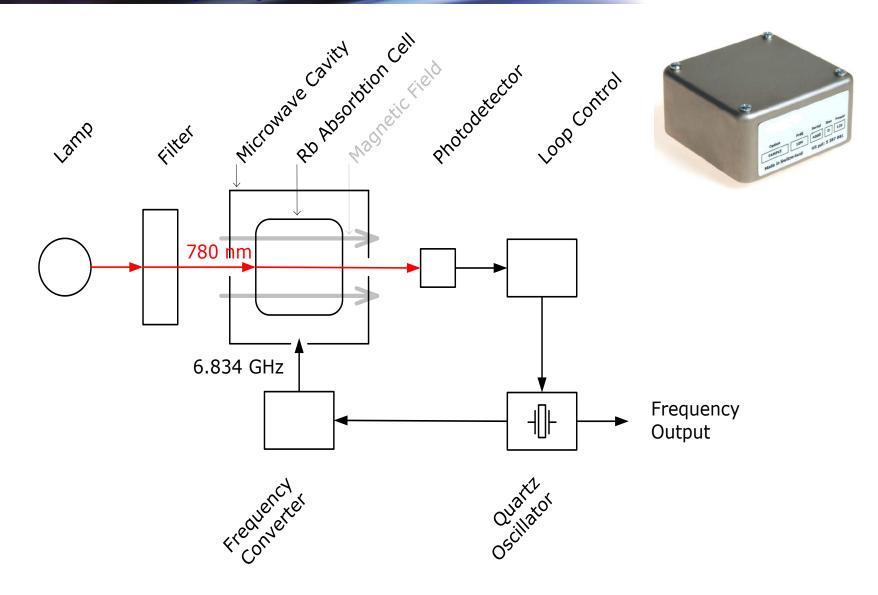
ILSAR

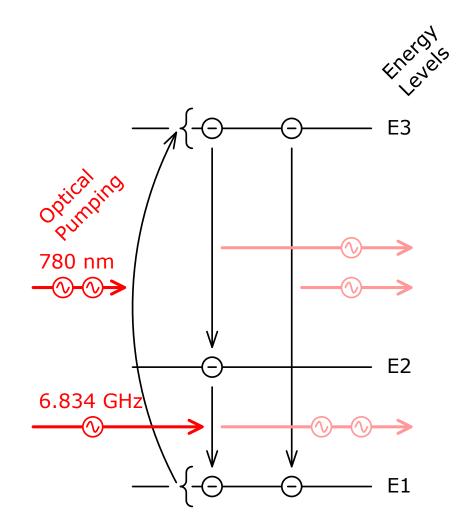

Fig. VI.4/G.8261 – Performance Test Topology (G.8261)

- Typical set-up for assessing performance of CES IWF (from G.8261)
- Requires several units (switches, traffic generators, etc.)
- May be affected by choice of switch (model/manufacturer)
- May be affected by manner in which traffic generated for loading
- May be affected by


Packet Network Testing – a rational approach

- Next generation test sets will emulate networks in terms of PDV (and packet loss profiles if necessary)
- Pre-determined PDV profiles will allow repeatable and "deterministic" test results
- Eliminates dependencies on manufacturer specific aspects of packet-switching network elements an method of introducing interfering traffic
- Suitably chosen PDV profiles will permit standardization of performance requirements
- PDV profiles can be created via simulation models, synthetic sequences as well as actual measurements


Frequency generation: atomic cesium clock (Cs) ... Stimulated Emission


Frequency generation: atomic cesium clock (Cs) QULSAR Magnetic Cesium Beam Tube

Frequency source: atomic rubidium QULSAR oscillator (Rb)

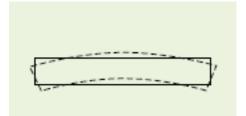
Frequency source: atomic rubidium QULSAR oscillator (Rb)

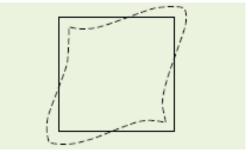


Frequency generation: quartz crystal oscillator (XO) Quartz crystal

QULSAR

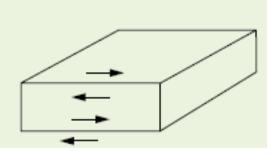
 $Quartz = SiO_2$


Pink = silicon atoms Blue = oxygen atoms



Quartz lattice

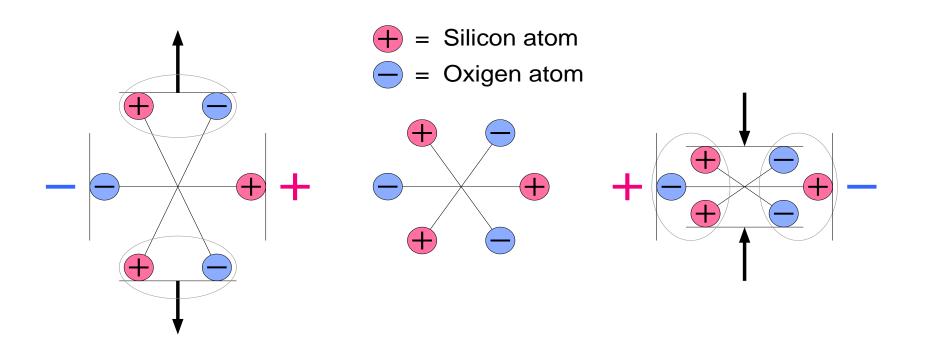
Frequency generation: quartz crystal QULSAR oscillator (XO)...Vibration modes of quartz plates


Flexure Mode

Extensional Mode

Face Shear Mode

Thickness Shear Mode Fundamental Mode Thickness Shear

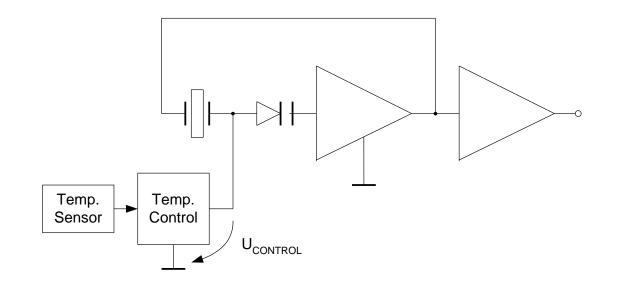


Third Overtone Thickness Shear

Frequency generation: quartz crystal oscillator QULSAR (XO)...Piezo-electric effect in quartz

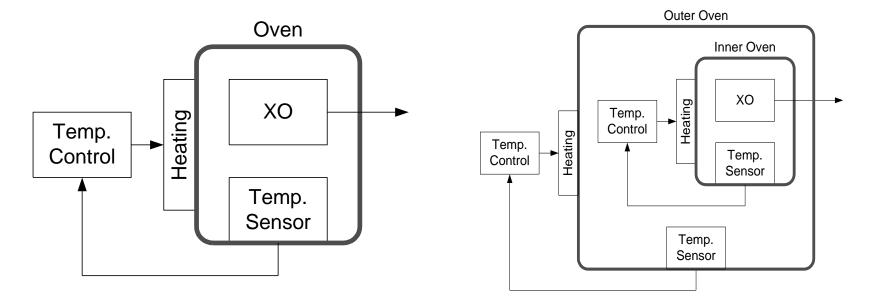
Piezo-electric effect:

- O Mechanical strain □ voltage
- O Voltage □ mechanical deformation

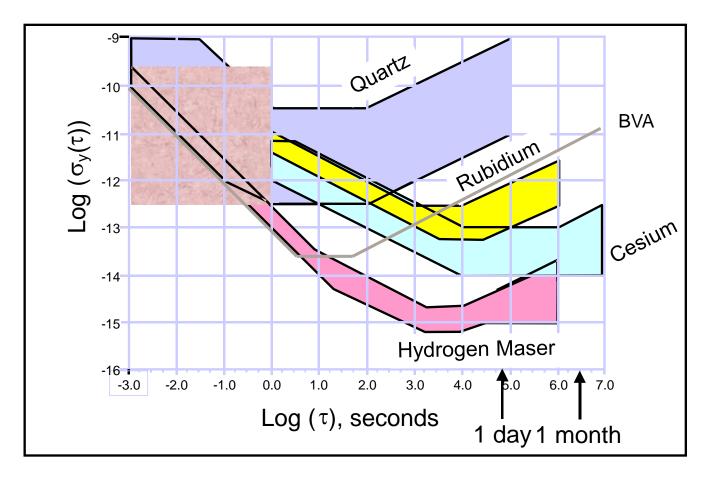


Frequency generation: **quartz crystal oscillator** (XO)...Temperature Compensated XO (TCXO)

- Quartz resonator in a feedback loop
- Resonance frequency is modified by a varactor diode so as to compensate temperature sensitivity


QULSAR

Temp. sens. of fractional freq.: 5E-8 to 5E-7 over [-55°C to 85°C]

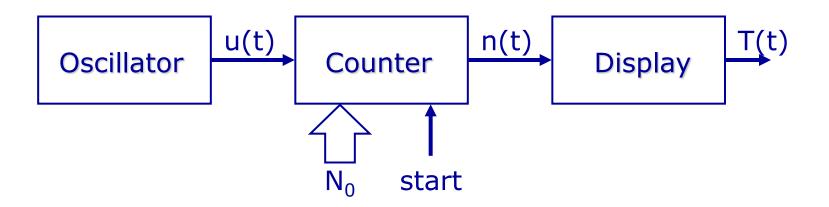


Frequency generation: **quartz crystal oscillator QULSΛR** (XO)...Oven-controlled XO (OCXO)

- A control loop maintains the oven containing the XO at (nearly) constant temperature.
- One or two ovens
- Single oven OCXO: 5E-9 to 5E-8 over [-30°C to 60°C]
- Double oven OCXO: 1E-10 to 5E-9 over [-30°C to 60°C]
- Double oven OCXO with BVA: 1E-10 over [-30°C to 60°C], 5E-11 over [-15°C to 60°C]
- Note 1: BVA = high tech resonator with improved ageing

Frequency generation: **comparison QULSAR** between XO, Rb, Cs & H

Abscissa: observation interval


Ordinate: ADEV, a frequency stability metric

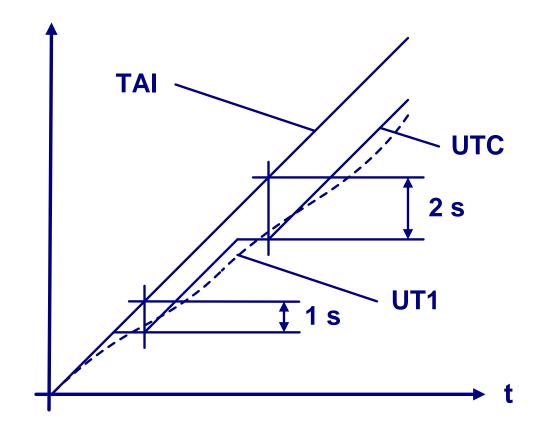
Time scale generation: clocks and time scales

A time scale is defined by: 1) a time unit 2) a time origin

A date is a number of units on the time scale

- A (time-)clock consists of:
 - 1) a periodic phenomenon which can be observed
 - 2) a counter which counts the number of periods
 - 3) a means for setting the counter to a preset value
 - 4) a display of the registered count

Time scale generation: **atomic time QULSAR scales**

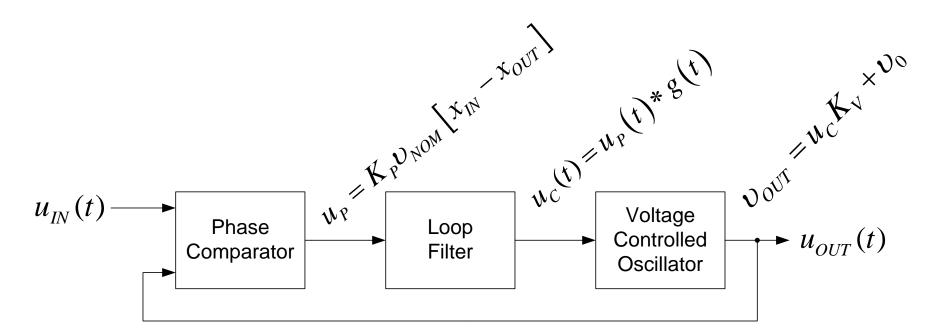

Origin of Atomic Time Scales :

1 January 1958, on 0 h 0 min 0 s UT2

International Atomic Time (TAI) :

Time scale based on the definitions of the second and of the origin of Atomic Time Scales (as mentioned above), and implemented by a network of atomic clocks located all over the earth and operated by the Bureau International de l'Heure (BIH) in Paris.

Time scale generation: **atomic time scales**

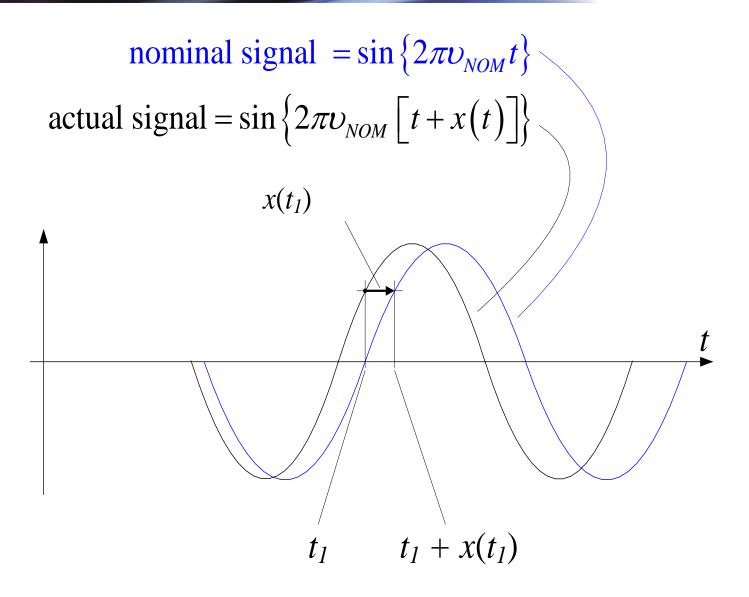


QULSAR

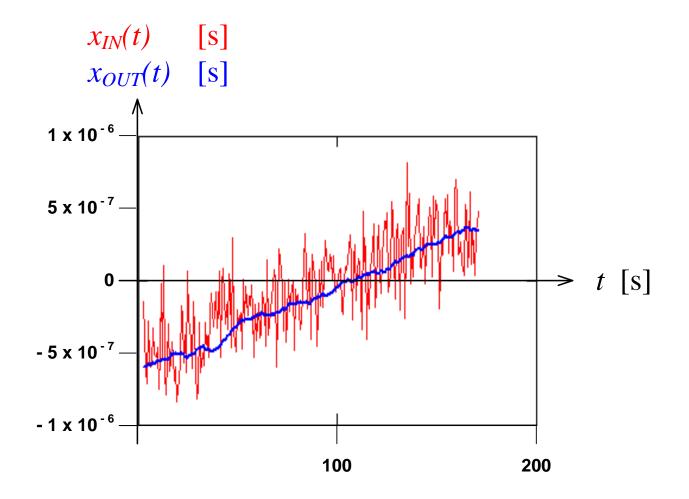
Continuous and discontinuous time scales

QULSAR

PLL: Working principle

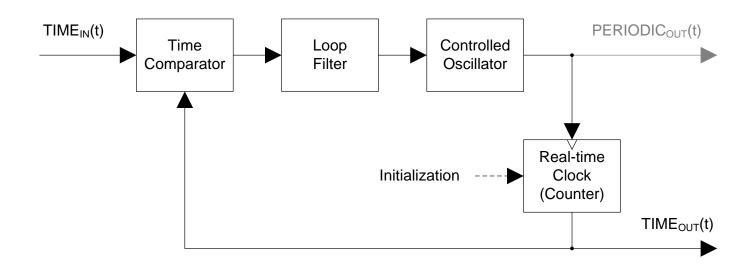


$$u_{IN}(t) = A \cdot \sin\left\{2\pi \upsilon_{NOM}\left[t + x_{IN}\left(t\right)\right]\right\} = A \cdot \sin\left\{2\pi \upsilon_{IN}\left(t\right) + \varphi_{0,IN}\right\}$$


$$u_{OUT}(t) = A \cdot \sin\left\{2\pi \upsilon_{NOM}\left[t + x_{OUT}\left(t\right)\right]\right\} = A \cdot \sin\left\{2\pi \upsilon_{OUT}\left(t\right) + \varphi_{0,OUT}\right\}$$

QULSAR

PLL: Time error x(t)



QULSAR PLL: Low-pass filter for time error x(t)

QULSAR

Time Locked Loop

