

Presentation Outline

- Simulation and experimental results for the effect of temperature variation on noise generation in a Telecom Boundary Clock (T-BC)
- ► Hybrid Clock arrangement for a T-BC
 - Dual Loop configuration
 - Simplified Model of the dual loop arrangement
 - DSP models for the dual loop arrangement
- Temperature testing/simulation considerations
 - Temperature variation profile
 - Oscillator behavior (measured): frequency offset versus temperature
- Results of simulation and measurement
- Concluding Remarks

Hybrid Clock (PTP plus SyncE)

 Model of Hybrid clock (G.8273.2) showing the physical layer (SyncE) feeding into the time layer (PTP)

Simplified view of a Hybrid loop for T-BC

DSP view of a locked loop (Time Domain)

Analysis of the DSP based Locked Loop

$$H_{xy}(z) = \frac{\gamma T \cdot [(1+\beta)z - 1]}{z^2 - [2 - \gamma T \cdot (1+\beta)]z + (1 - \gamma T)}$$

$$H_{\varepsilon y}(z) = \frac{T \cdot [z-1]}{z^2 - [2 - \gamma T \cdot (1+\beta)]z + (1-\gamma T)}$$

Transfer Function from input
(x) to output (y)
Transfer Function from quantizer
(
$$\varepsilon$$
) to output (y)

$$H_{\eta y}(z) = \frac{z^2 - 2z + 1}{z^2 - (2 - \gamma T \cdot (1 + \beta)) \cdot z + (1 - \gamma T)}$$

2

Transfer Function from oscillator (η) to output (y)

- From input to output is low-pass; from oscillator to output is high-pass
- ► T : sampling interval (loop update interval)
- ► Time-series simulation achieved by:
 - Implementing transfer functions as difference equations
 - Creating suitable excitation signals $\{x(n)\}$ for input and $\{\eta(n)\}$ for oscillator noise and $\{\varepsilon(n)\}$ for quantization noise (if included in simulation)

Temperature Variation Profile 40min period THIGH 10min 10min 10min 10min

- ► Temperature is changed in the following periodic pattern:
 - Start at temperature = TLOW
 - 1 deg-C/min positive ramp for 10min
 - Steady at T_{HIGH} for 10min
 - 1 deg-C/min negative ramp for 10min
 - Steady at T_{LOW} for 10min
 - Repeat

Four temperature ranges considered: (0,10); (10,20); (20,30); (30,40)

Frequency Offset versus Temperature

- Measured characteristic of oscillator used in the experiments
- Frequency offset normalized to 0 at temperature of 25 deg-C
- Experiments considered 4 zones of 10 deg-C width
- Peak-to-peak FFO in range indicated (in ppb)

Testing Methodology (G.8273)

- Timing measurements done entirely with Paragon-X; some analysis done off-line with TimeMonitor Analyzer
- Noise Generation Tests imply no impairment introduced by Paragon-X for either PTP layer or PHY Layer (SyncE)

Simulation of Hybrid Loop

	PHY BW = 10Hz		PHY BW = 3Hz			
						Observation:
	PTP: 0.05Hz	PTP: 0.1Hz	PTP: 0.05Hz	PTP: 0.1Hz		The bandwidth of PHY Layer is large enough to render the oscillator temperature variation moot (when SyncE present)
	0.22ns	0.32ns	0.23ns	0.31ns	0 – 10 deg-C	
	0.23ns	0.31ns	0.23ns	0.31ns	10 – 20 deg-C	
	0.22ns	0.31ns	0.23ns	0.31ns	20 – 30 deg-C	
	0.22ns	0.31ns	0.22ns	0.31ns	30 – 40 deg-C	
	0.22ns	0.32ns	0.22ns	0.32ns	0 – 40 deg-C	

- ▶ Bandwidth choices: 3Hz and 8Hz for PHY Layer; 0.05Hz and 0.1Hz for PTP Layer
- ► Time-stamp granularity (in PTP loop): 8ns
- Oscillator variation derived from measured values of frequency-offset as function of temperature
- ► Calculated parameter: standard deviation of PTP Layer time error

Experimental Results

Symmetricom TimeMonitor Analyzer TDEV; Fo=1.000 Hz; Fs=1.000 Hz; 2020/08/11; 00:00:00

Symmetricom TimeMonitor Analyzer TDEV; Fo=1.000 Hz; Fs=1.000 Hz; 2020/08/11; 00:00:00

- Unit Under Test : Class-B T-BC with external oscillator that is in the temperature chamber
- Blue curve is for constant temperature (baseline)
- Without SyncE the behavior is roughly the same with and without temperature variation
- With SyncE we observe the effect of all time-stampers being syntonized

Concluding Remarks

- Digital Signal Processing (DSP) models are very useful for enabling time-domain simulation – Z-domain transfer functions are very easily converted into difference equations
- Simulation is an effective tool to determine whether temperature related frequency offset of an oscillator will be a significant contributor to noise generation
 - Significantly reduces the time taken to get a result (e.g. 1 minute of compute time versus 2hrs of experiment)
 - Can support "what if" scenarios for variable bandwidths and different time-stamp granularities

Thank You Questions, comments, suggestions? kshenoi@qulsar.com

