COMMSCOPE®

5G over Cable Networks

Yair Neugeboren

Director, System Architecture, Broadband Networks CTO group

WSTS 2021

Agenda

- Cable Timing introduction
- Cable and Mobile why even bother?
- DOCSIS Timing Protocol (DTP) Cable's SYNC vehicle
- Preliminary results

- > DOCSIS transport is Synchronous in nature and uses a common clock derived by the CMTS
- > The CMTS delivers Timestamps on the downstream (64-bit in DOCSIS 3.1)
- > The CM derives its frequency from the OFDM symbol clock and the "time reference" from the repeated timestamps
- +/-5 ppm on Clock accuracy (usually free running).
- \blacktriangleright Clock drift rate \leq 10 ppb/second
- Phase steps are not allowed
- The DOCSIS path delay is inherently asymmetrical (at the ms level...) and can contain a moderate to high amount of jitter (10s of μs...)

Cable and Mobile – why even bother?

Why do Mobile over DOCSIS?

• HFC infrastructure provides many advantages for wireless backhaul when compared to pure fiber backhaul or microwave/wireless backhaul approaches:

- <u>Ubiquity</u> HFC networks run down every street and to every building in the city. This gives significant flexibility to wireless teams to design optimal small cell deployments.
- <u>Power</u> One of the most notable advantages of HFC over fiber and wireless backhaul is its ability to transport power to small cells.
- Deployment Speed & Simplicity HFC aerial architecture provides an ideal medium for fast small cell backhaul deployments.

Why do Mobile over DOCSIS – case study

- A North American operator wanted to further quantify the real-world benefits of using coax versus extending their fiber to feed their small cell deployments.
 - A highly dense location that was a likely candidate for upcoming small cell deployments was chosen.
 - Ideal locations were designed for their RF characteristics only and did not take into consideration proximity to HFC plant, power or fiber

Why do Mobile over DOCSIS – case study

- The fiber wireline design team designed a build to connect each of the ideal small cell locations to the nearest fiber location (typically the nearest fiber node).
- as comparison the design team completed a design that connected the small cells to existing coaxial infrastructure.
- They found that all the ideal small cell locations were within **10 meters of coax**....

Small Cell Count	Backhaul Option	Backbone Fibers	Estimated Civil Build Cost	Estimated Build Time
15	DWDM	1	\$183k	4-6 months
15	Coax w/ couplers	0	\$1.5k	1 week

Why do Mobile over DOCSIS – indoor femtocells

- At least one major NA operator is considering to backhaul their home femtocells using DOCSIS.
- Different approaches whether to combine the CM/gateway and eNb/gNb into a single device or not.

DOCSIS Timing Protocol (DTP) – Cable's SYNC vehicle

DOCSIS Domain Time Distribution

- CMTS synchronizes DOCSIS domain to network source
 - With IEEE1588v2, CMTS fulfills PTP Slave Port functions while syncing the DOCSIS Domain to its clock.
 - SyncE EEC may reside in CMTS, can be used to assist clock holdover and Locking time if SyncE primary reference clock is the same as PTP GM
- CM clock is tightly locked to CMTS (and ultimately PRTC) using DOCSIS Symbol clock.
- DOCSIS latency and asymmetry are measured and compensated for by DTP
- Using DOCSIS Time Protocol, the CM generates precision timing for subtending network (PTP Master and SyncE output functions reside in the CM)

MBH Sync over ICMTS – fully aware network (G.8275.1)

DTP – DOCSIS Timing Protocol

- Introduced in DOCSIS 3.1 •
- Defines a mechanism to measure and model the asymmetries in the HFC network and to provide an adjustment factor to the DOCSIS timestamp

DTP Profile pre-calibration

MBH over DOCSIS "SYNC" spec

- There is a Cable labs working group dedicated for specifying the requirements needed for the DOCSIS network (CMTS/RMD/RPD and CM) to support MBH
- WG started to work in 2018.
- I01 was released:
 - Requirements of supporting phase over DOCSIS with full network support of 1588 (all the NE are 1588 BC using the G.8275.1 profile and based on ITU-T G.8273.2 performance requirements)
 - Requirements of supporting frequency over DOCSIS with full network support of SyncE
 - I-CMTS / DAA use cases
 - Testing concepts and requirements (e.g. 1 PPS, probing points etc.)
- I02 will include (planned for Q1/21):
 - New DOCSIS TLVs and MIBs (for CM configuration)
 - Fixes and updates to I01
- I03 will include (Planned for 2021):
 - Requirements of supporting phase over DOCSIS with partial network support of 1588 (some of the NE are 1588 BC using the G.8275.2 profile and based on ITU-T G.8273.4 performance requirements)

MBH over DOCSIS "SYNC" spec – Phase Budget (fully aware network)

Budget Component	ITU-T	I-CMTS		DAA			
Budget Component	Reference	n	@	TE	n	@	TE
PRTC (Class A is 100 ns, Class B is 40 ns, ePRTC is 30 ns)	100	Class A 100		100	Class A		100
Network Holdover and PTP rearrangements	NA or 400	200		200			200
Network Dynamic TE and SyncE rearrangements	200 for 10 BC	200		200	7		200
T-BC (Class A is 50 ns, Class B is 20 ns)	500 for 10 BC	2 50		100	4	50	200
Link Asymmetry	250 for 10 BC			50			50
Ethernet & Dynamic Aspects of Ethernet TE Budget	1050			650			750
CMTS (Class A is 200 ns, Class B is 100 ns)		Class A		200	Class A		200
DTP				50			50
HFC path		50				10	
HFC node				50		-	10
HFC amp/LE		N+5	10	50	N+3	10	30
CM (Class A is 250 ns, Class B is 100 ns)		Class A 2		250	Class A		250
DOCSIS Network TE Budget				650			550
Rearrangements and short Holdover in the End Application	short Holdover in the End Application 250 or 0			0			0
Base Station Slave or Intra-Site distribution	50	Class A 50		50	Class A		50
Base Station RF Interface	150	150				150	
Base Station Network TE Budget	450	200		200			200
Total TE Budget	1500			1500			1500

DOCSIS may "steal" up to 1/3 of the budget...

Preliminary Results

COMMSCOPE[®] | Idea Hub

Slave Clock Time Error Performance with 3' of Coax (zero length plant)

- TE of the recovered phase at the slave probe is compared to GPS time
- Measurement is performed with a 3-foot coax to approximate the zero-length plant for calibration
- Upper diagram shows the recovered phase has a TE of 220 ns with a variation of 100 ns peak-to-peak
- Results meet the ~500 ns TE budget for a Class A DOCSIS system defined in the Cable Labs SYNC specification
- Lower diagram shows recovered phase after further adjusting DTP parameters to reduce the cTE

Slave Clock Time Error Performance with 400' of Coax

- Plant cable length was increased to 400'
- DTP parameters were unchanged from calibrated values with 3' coax
- The measured TE at the output of the CM is roughly
 -10 ns with a variation of 50 ns peak-to-peak
- MTIE is below 100 ns, which meets the requirement for phase delivery in G.8271.1
- Consistent results with 3' coax

Tests Result			
Interval (sec)	Result (ns)	Mask Stat	Margin Stat
0.1	N/A	N/A	N/A
0.2	N/A	N/A	N/A
0.5	N/A	N/A	N/A
1	24	N/A	N/A
2	40	OK	OK
5	44	OK	OK
10	48	OK	OK
20	48	OK	OK
50	56	OK	OK
100	60	OK	OK
200	80	OK	OK
500	88	OK	OK
1000	88	OK	OK
2000	88	OK	OK
5000	N/A	N/A	N/A
10000	N/A	N/A	N/A
20000	N/A	N/A	N/A
50000	N/A	N/A	N/A
100000	N/A	N/A	N/A

Results Summary

- Similar results were seen when using Remote PHY or traditional CMTS (DAA vs. CAA).
- Time transfer stability (Jitter) between the CMTS and CM (DTP) was < ±30 ns.
- Time transfer stability after RPD/CM reset was < 50 ns.
- After DTP calibration between RPD/CMTS CM and network Asymmetry compensation at the RPD/CMTS, the end to end |TE| over DOCSIS was < 100 ns and MTIE < 100 ns.
- Results are within the MBH Sync Spec requirements (300-650 ns depending on DAA vs. CAA & class A vs. Class B devices).

Challenges

- There are conflict requirements between Mobile and DOCSIS that need to mitigated (for example):
 - DOCSIS frequency change limit of 10 ppb/s might influence the filter BW and affect compliance to G.8273.2
 - Phase steps are not allowed in DOCSIS, how to fix (relatively) large phase offsets quickly?
 - For RPHY use cases, how to support 2 different timing "applications" (R-PHY & Mobile) with different phase/frequency lock thresholds and limitations?

Conclusion

- The HFC network is a good candidate for backhauling (or even fronthauling) 5G
- Sync delivery can meet the 100-200 ns TE.
- Lab trials and field trials are planned for 2021 with multiple operators

now meets next

THANK YOU

Yair Neugeboren yair.neugeboren@commscope.com