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@ Location Based Services

e LBS market from USD 16 billion in 2019 to
USD 40 billion by 2024

* 60% of the global LBS revenues taken by very
few leading players

* Global navigation satellite systems’
technology integrated in the end user device
and custom over-the-top (OTT) technologies.

* Critical applications demand for technologies
deeply integrated in the mobile network .~

ecosystem [\ Y
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Cellular Localization
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“The 5G Italy Book 2019: a Multiperspective View of 5G,” CNIT, Dec. 2019



5G Location Service Levels

Accuracy Coverage, environment of use and UE vel.
Serv. Lev| Abs./Rel. Hor. Acc.| Ver. Acc. Avail. Lat. . 5G enh. pos. ser. area
5G pos. ser. Outdoor Indoor
area
Indoor: up to
30 km/h;
Outdoor
(rural and Indooru
1 A 10m 3m 99% 1s urban): up to NA to 30 kl.l‘l/ﬁl
500km/h
(trains) and
250km/h
(other veh.)
Outdoor Outdoor (dense
(rural and urban): up to 60
urban): up to km/h; Along ;
2 A 3m 3m 99% 1s 500km/h  roads up to 250 tl(’)“;%"l’('m‘;‘l’l
(trains) and =~ km/h and along
250km/h  railways up to 500
(other veh.) km/h
Outdoor Outdoor (dense
(rural and urban): up to 60
urban): up to km/h; Along Indoor: 1
3 A lm 2m 99% Is 500km/h roads up to 250 to 30 k'm /I;l
(trains) and ~ km/h and along
250km/h railways up to 500

(other veh.)

km/h

Service requirements for the 5G system, 3rd Generation Partnership Project 3GPP™ TS 22.261




5G Location Service Levels

Accuracy Coverage, environment of use and UE vel.
Serv. Lev| Abs./Rel. Hor. Ace| Ver. Acc. Avail. Lat. » 5G enh. pos. ser. area
5G pos. ser. Outdoor Indoor
area ,
Indoor: u
| A lm 2m 99.9% 15 ms NA NA to 30 km /Il)l
Outdoor (dense
urban): up to 60
Outdoor km/h; Along Tndoor: u
5 A 0.3m 2m 99% Is (rural): up to  roads up to 250 (o 30 k'm /Il)l
250km/h km/h and along
railways up to 500
km/h
Outdoor (dense Indoor: up
6 A 0.3m 2m 99.9% 10 ms NA urban): up to 60 '
_ to 30 km/h
km/h
Indoor and outdoor (rural, urban, dense
- R 0.9m 0.2m 99% s urban): up to 30 km/h; rel. pos. is between

two UE (within 10m apart) or one UE and 5G
pos. node (within 10m apart)

Service requirements for the 5G system, 3rd Generation Partnership Project 3GPP™ TS 22.261
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Examples of Safety-critical Applications: eV2X

Host Vehicle
Adjusts speed 10 accommodate RV1's merge

Advanced Driving allowing vehicles to coordinate their trajectories or maneuvers
(maneuver coordination)

Positioning [m] 1.5 (30) . ‘Ikaﬂonzone

Extended Sensors enables the exchange of raw or processed data gathered through < womap
local sensors or live video data

Positioning [m] 0.1m™~0.5 m (30)

Remote Driving enables a remote driver or a V2X application to operate a remote
vehicle

Positioning [m] 0.1 (30)*

scenario application zone

5G; Service requirements for enhanced V2X scenarios” (3GPP TS 22.186 version 16.2.0 Release 16, Nov 2020)
*5GAA Whitepaper, C-V2X Use Cases Volume II: Examples and Service Level Requirements



@ 3GPP Positioning and Synchronization

* 5G Localization methods rely on accurate timing (e.g., %X
OTDOA, Observed Time Difference of Arrival) (X)Y) «'E'))
Observed

Time Difference

 The synchronization requirements depends on the :
of Arrival

location accuracy requirements:

— As an example, to achieve a location accuracy of 40-
60m, a relative time error less than 200 ns is required.

Time Error

e Other source of timing errors are the presence of NLOS (X,Y)

conditions and the multipath propagation “

Positioning
Server

3GPP TR 37.857 “Study on indoor positioning enhancements for UTRA and LTE”



Why Synchronization in 5G

Guard period Sync is required for
S~ e controlling interferences in TDD
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@ The Project LOCUS (H2020)

LOcuUs

1ocation Infe
S oft- mformatwn, Mac 6”,

LOCalization and analytics on-demand
embedded in the 5G ecosystem, for Ubiquitous vertical
applicationS

* Enabling accurate and ubiquitous location information as a
network-native service

* Derivation of complex features and behavioural patterns
from raw location and physical events for application
developers (location-based analytics)

* Localization of terminals for improving network
performance and to better manage and operate networks
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LOCUS Consortium: CNIT, Ericsson AB, Ericcson S.p.A., IBM, NEC, Orange, OTE, Samsung, VIAVI, Incelligent, Nextworks, IMDEA Netv@
University of Malaga.
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The Project LOCUS (H2020)
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New Services/ 3" party apps

l Network Management (OSS/BSS)

Function Container

LOCUS APIs
(localization as a service)

Input/ Output
LOCUS PLATFORM

Function Interface

—
Localization & Mgmt Interface
Analytics for

New Services

SidV SNJ01

Localization
Enablers
(LMFs)

(uonein8yuod g Juawadeuew suoiPuny)

LOCUS APIs
(data management)

LOCATION SECURITY & PRIVACY FUNCTIONS [ [

DATA SOURCES

LOCUS Persistence
Entity

Virtualization infrastructure and platform

N. Blefari-Melazzi et al., "LOCUS: Localization and analytics on-demand embedded in the 5G ecosystem," 2020 European Conference on Networks and Communications (EuCNC),
Dubrovnik, Croatia, 2020, pp. 170-175.
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OTDOA-based localization

Classic localization techniques rely on single value estimates (SVE), e.g. distance/angle,
which are jointly used together with prior information by a localization algorithm
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@ OTDOA-based localization

* Timing error

[ \ ( \ 100 T T
01 90 -
N
N L 70 -
[7)
- 41 N —_ ®
‘~$ E ol UE . .-
, > B | ocalization error: 14.21 m
s’ g 40+ .
§ y ® ps3
oy 7 *I Bs1 *
N
WM_ - L )I/ 20 ®
SVE Est. Loc. Alg. 10 - —
T L J
0 1 1 1 1 1 | 1 1 1
SVE model T 0 10 20 30 40 X5[r(-)n] 60 70 80 90 100
. /|
prior information Example: one time measurement from ~

a base stationn has 100 ns error N7/



y [m]
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Sl-based A\

A. Conti, S. Mazuelas, S. Bartoletti, W. C. Lindsey, and M. Z. Win, “Soft information for localization-of-things,” Proc. IEEE, Nov. 2019.
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Sl-based 5G localization

H2020 LOCUS project: Localization and analytics on-demand embedded in 5G ecosystem, for
ubiquitous vertical applications
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preliminary results within the LOCUS project



@
@ Summary

 Positioning is a key enabler for a wide range of emerging applications in 5G
scenarios

* The European Project LOCUS is aiming at improving localization accuracy,
close to theoretical bounds and extend localization with physical analytics

* Synchronization and timing are vital for addressing accurate localization in
critical scenarios, e.g. safety-critical ones

e Extremely accurate synchronization could result in unreasonable cost for a
network operator:

e Soft-Information is a new paradigm for learning and exploiting location information
and mitigate several error sources including synchronization and timing errors due to
impaired wireless propagation; preliminary results show Sl to outperform SOA
localization methods
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