Precision Timing in Smart Cities

microPNT For Autonomous Vehicles

A Leading Provider of Smart, Connected and Secure Embedded Solutions

Joe Neil 6 May 2020

Navigation Safety Is Based On Precise Time: Understood Since the Mid 1800's

Bristol:10.50am London:11am (relative to local midday sun)

In the early 1800s time keeping errors caused frequent train collisions.

A 10 minute time error at 60 kph equates to +/- 10 km location uncertainty for both trains.

Royal Commission investigation (1849): Both trains should not have been in the same place at the same time.

In our words :

The cause was poor clock synchronization.

Position Requirements & Awareness

Navigation Norm today: HAV requirement: +/- 5 m fuzzy location / 10's of seconds +/-2 cm "continual absolute" location / < 100ms

Distance Travelled / Vehicle Speed more elastic (inaccurate) as vehicle speed increases

Speed Kph	Meters Per Second	Meters Per 100 ms	centimeters per 10 ms
50	15	1.5	15
100	30	3	30

Positional Awareness and Processing Times (NHTSA)

Autonomy Level	Longitude Accuracy	Lateral Accuracy	Max Processing Latency
1	+/- 200 - 500 cm	+/- 100 - 200 cm	100 millisec
3 - 5	+/- 2 - 5 cm	+/- 2 - 5 cm	10 millisec

3 Note: Average driver reaction to hit brake = 2.3 seconds (IEA2000_ABS51. pdf)

Autonomous Driving in Smart Cities

How can we achieve 2-5cm accuracy, in real time, at normal driving speed? In-vehicle intelligence & control with millions of powerful AI instances optimizing for trajectory and time!

This what we have now!

Sophisticated Brains at Work.....

Three Aspects to Vehicle Location and Timing

- Timing and Clocks Inside Vehicles:
 - Plethora of protocols/standards, many proprietary, TSN may eventually unify
- On-Board Sensors: Position/Movement Relative to Neighbors
 - To complement/replace GNSS information
- Position, Navigation and Time (PNT) Relative to UTC
 - Depends on satellite visibility and receiver integrity

These aspects are not yet well linked, In-Vehicle or Vehicle 2 Vehicle. ... and each takes significant computing effort

Navigation = Precise Location & Precise Time

Autonomous Driving will depend on precise time co-ordination to a common reference both between and inside vehicles

Critical Parameters

- Relative Location:
 - the location of a vehicle relative to adjacent vehicles
- Relative time:
 - the time used by a vehicle relative to the time used by adjacent vehicles

Simple Solutions

• Easily solved with sensors.....

• Easily solved with GNSS......

- GNSS Problems
 - Weak signal / interference
 - Not always available
 - Tunnels
 - Parking garages
 - Urban canyons / skyscrapers

- Solutions
 - Even more sensors !
 - Real time maps & GPU/CPU intensive supplementary AI systems
 - Low Earth Orbit
 - Dedicated Short Range Comms (DSRC)
 - Signals Of Opportunity

In Vehicle Sensors

Sensor	Problems		
RADAR	Lobe elasticity & strobing increases with speed, mutual interference		
Map Matching + LIDAR	Database must be rapidly updated - requires precise location info from GNSS ! Heavily AI focused		
Cameras	Inhibited by smoke, fog, precipitation		
IMU	Rapidly inaccurate over short distances		
SOP	Comments		
LEO	Generally same accessibility issues as GNSS		
DSRC	Needs real time network access - (may have RF regulatory issues)		
Cellular, WiFi, TV	May be useful for determining range or bearing. Coverage not ubiquitous, RF issues,		

In-Vehicle Timing: Low Cost Oscillators

Many on-board timing requirements

- Critical: ECU, IMU, MCU, emergency braking
- Non-Critical: Media
- Navigation ?

Many different In vehicle networks

 Linking control, sensors, mechanical systems, media etc.

Vehicles use low cost oscillators

- GNSS considered too unreliable
- Clock quality depends on oscillator stability
- GNSS considered too unreliable

Oscillators Drift

- Aging, short-term noise
- Temperature variation
- Supply voltage, shock, vibration.....
- Initial frequency deviation this will cause sharp drift in a short time on restart
- No problem if vehicle timing is self contained
- Dilemma
 - Problem for "situationally aware" systems
 - 1 autonomous vehicles cannot use on-board clocks that are drifting
 - 2 GNSS is not enough, convergence time, visibility

GNSS: The Urban Canyon Challenge Concrete jungles, tunnels, etc. 20,000 km <100m **Poor GNSS** Short-term **Poor GNSS** Visibility

Street-level Micro-PNT – a Smart City Solution

12

Micro-PNT Clock Mesh Creates MicroTimescales

mPNT Clock

- GNSS Receiver
- Ultra-stable clock using Chip Scale Atomic Clock or HP OCXO
- Generic RF to vehicle (e.g. UWB)

In-Vehicle

 Generic low cost, low power transceiver to request/receive GNSS info from micro-PNT mesh

- Urban Canyon miniature timescale (meshed clocks) tied to UTC
- Extremely fast delivery of loc/time data to receiving vehicles

City Block "microTimescales" can mesh.

GNSS Enhancement & mPNT Compared

Method	Convergence	Receiver	Requires	Precision
microPNT	Milliseconds	LoS to mPNT nodes	Dense mPNT network	< 5cm up to 200km/h
RTK: Real Time Kinematics	> 30 mn	limited range Needs LoS to reference nodes	Calibrated reference nodes	1 cm – static 10cm @100kph
PPP: Precise Point Positioning	10 - 30 mn	Needs LoS to GNSS	Multi band receivers	10cm static 5m @ 100kph
SBAS Space Based Augmentation System	> 30 mn	Needs LoS to reference nodes & GNSS	Heavily calibrated reference nodes	20cm static 2m @100kph

What infrastructure is most suitable?

Scalable, fixed infrastructure, powered, new or retrofittable and close to vehicles ...

Smart City Micro-PNT

• Bring GNSS closer to the vehicle

- Provides ubiquitous ultra precise location and traceable precise time with reference to UTC
- Provide security and protection for existing GNSS/LEO signals
- Creates highly distributed miniature "Timescales" that are difficult to disrupt
 - Peer-to-peer exchange of timing info between City and Vehicle sensors in a localized system tied to UTC

• Leverages Well Established Timing models

 Leverages high performance clocking systems e.g. Chip Scale Atomic Clocks & powerful compensation techniques and clocking algorithms derived from decades of experience - no need to reinvent the mapping or location wheel

• Simple and low cost

- Easy to deploy at different densities by campuses towns, cities, freeways
- Cheap enough to implement with any vehicle cars, bikes, scooters, trains, trucks ...

Summary

- Quasi or Fully Autonmous Vehicles of all kinds need smart timing solutions
 - Mitigate GNSS Denial of Service from malicious activity and Urban Canyon that is increasingly complex and difficult to navigate
- GNSS & Sensor solutions do not address the problem adequately
 - too expensive, too complex, too slow, too unwieldy, too vehicle centric...
- Vehicles, & people, need much tighter location data, much faster, at low cost,
 - RARR "Rapid Access/Rapid Return" model, more nimble, more assured, more reliable,
- Just as we engineered the Global Timescale using Satellite Systems, we now need to engineer the Smart City for the Internet of Moving Things
 - miniature Timescales based on scalable, economically viable micro-positioning technologies

Notions Discussed In This Presentation

- Bringing reliable fast precise secure PNT into Urban Canyons
 - Offloading cost of PNT from vehicle to Smart City
- Tying autonomous vehicles to a global reference time (UTC)
 - Unifying relative and absolute vehicle time/location
- Ensembling micro-clocks to create miniature Timescales
 - Flexible, localized, and tied to UTC
- Complementing on board sensors with high availability PNT
 - Offloading high intensity compute required by AI map matching

• Precise Timing enables "The Internet of Moving Things"

Frequency and Time Systems

Thank You

joe.neil@microchip.com